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Abstract. We present a novel approach for unifying regression models
learned in parallel on different but related datasets using multi-task fea-
ture learning based on symbolic regression. The FFX framework (Fast
Function Extraction) is used for symbolic regression. It relies on regu-
larized linear regression instead of genetic programming, thus providing
a scalable and deterministic framework for implementation. FFX pro-
vides a basis for an iterative multi-task feature learning approach. Models
learned on separate tasks are coupled by iteratively promoting common
terms and penalizing seldom occurring terms, leading to improved consis-
tency and interpretability of models across tasks and improved stability
on new data. We conducted experiments on both real world datasets and
synthetic datasets. The results show that the use of this basic approach
already leads to models which share more features, show less complexity
and still retain the same model performance when compared to a single
symbolic regression run. Finally, we provide ideas and plans for future
improvements based on our first implementation.

Keywords: multi-task feature learning, symbolic regression, FFX, fast
function extraction, machine learning, ECML

1 Introduction

In the field of multi-task learning, different but related tasks in the same feature
space — for each of which labeled data is available — are learned simultaneously,
with the goal of improving the performance and robustness of each individual
task by incorporating knowledge from all other tasks [3]. This can be done by
using some kind of shared representation between tasks. [12] categorizes multi-
task learning as a variant of inductive transfer learning where labeled data for
all tasks are available and tasks are learned simultaneously. Using this catego-
rization, in multi-task learning tasks are learned in parallel, whereas in other
transfer learning variants a target task is learned using information from previ-
ously learned source tasks. Goals of transfer learning in general can be to improve
generalization performance of the target tasks or to deal with small amounts of
training data available for each task.



When dealing with different but related tasks in the same feature space,
some of the input features can be common or shared features, i.e., they are
relevant to other tasks in the multi-task setting. This also means they represent
the commonality between tasks. Other features can be (task-)specific, they are
only needed for a few tasks (or even just one task) to yield acceptable model
performance. These features represent the differences between tasks. Trying to
learn which features are common across all tasks is called multi-task feature
learning [1].

The approach introduced in this contribution extends this idea of common
and task-specific features to common and task-specific terms in a symbolic re-
gression setting.

In symbolic regression [9, 15], target functions are free-form formulas, consist-
ing of candidate terms to be selected and combined by the symbolic regression
algorithm. However, a set of basis input features and operators has to be provided
on which the regression algorithm can perform selection. Symbolic regression is
used in problems where flexibility is of high importance. In addition, by provid-
ing basic input features and operators prior knowledge can be used to direct the
learning algorithm in the right direction.

In this paper we present a multi-task feature selection framework for regres-
sion tasks called SymReg-MT. It operates on multiple related datasets sharing
the same feature space by using an iterative approach to unify task models based
on frequency of occurrence of features. We aim to improve the trade-off between
complexity and quality, our focus is not primarily on reducing the model error
when compared to learning the tasks separately. Our goal is to represent differ-
ent but related tasks by similar models — with respect to the terms used in the
models — and thereby to obtain simpler and more robust models. Furthermore
our goal is to increase the interpretability of the task models as well as to reduce
the amount of data needed for each individual task.

The approach described in this paper has its origins in an industrial appli-
cation of one of our industry partners, where we successfully applied symbolic
regression methods. In this use case we had related regression tasks and looked
for the simplest models that could achieve a predefined error threshold (average
as well as maximum error). Model selection based on a target error is further
described in Section 4. In addition to testing our approach on data from one of
our industrial projects, we used the method from the multi-task feature learning
paper [1] for generating synthetic datasets for additional evaluation. More details
about the exact process for generating the datasets can be found in section 6.1.

Section 2 describes related work also dealing with the subject of multi-task
feature learning, especially identifying shared features. Section 3 defines the sym-
bolic regression problem and describes the FFX framework our approach uses to
learn the task models in each iteration. Section 4 presents our iterative approach
to multi-task feature learning. Section 5 contains additional remarks concerning
our implementation. Section 6 presents the results of our evaluations both on
synthetic datasets and real world datasets. Finally, Section 7 concludes the pa-



per with a discussion of the presented framework and lists some of our ideas for
further investigation and enhancement.

2 Related Work

In recent years, several papers addressing the problem of multi-task feature learn-
ing were published [18, 7, 10, 5, 8, 6], though our approach is the first one to use
a symbolic regression framework as a basis for such an approach. Most of the
papers in the related work are concerned with the problem of negative transfer,
which occurs in the presence of an outlier task. In such a case, the assumption
that all tasks in the multi-task setting share a common set of features does
not hold. As a consequence, selected features are ”forced upon” the outlier task
which reduces its model performance. This problem is often addressed by learn-
ing ”dirty models” [6], which allow for features that are solely assigned to a
single task in addition to common features shared by all tasks.

The approach presented in this paper does not address the problem of nega-
tive transfer explicitly. External (expert) knowledge of the datasets is necessary
to avoid trying to learn similar features for tasks whose models do not share the
same features as the other tasks. The motivation for SymReg-MT are problems
with highly related tasks. This is the case for our original problem and many
other industrial applications where tool and workpiece combinations generate
an immense number of different settings which are highly related because of the
underlying industrial process, for which we require a similar structure over all
settings in order to improve robustness and interpretability of the models.

[18] proposes an iterative hierarchical regularization approach for multi-task
classification problems. The approach balances l1/l2- and l1-norm regularization
to share features between all tasks through the l1/l2-norm but at the same
time allow sparse models without sharing by using l1-norm. This is achieved by
starting with pure l1/l2 regularization and subsequently putting more weight on
l1 regularization in later iterations allowing for more task specific features. The
weight matrix Wl of the current level l is learned with respect to the weight
matrix Wl−1 of the previous level for l = 1..L with L being the predefined
number of levels in the algorithm.

[7] is directly based on [2] in which the authors use l2,1-norm to ensure the
selection of sparse features shared across all tasks. In [7], a shared feature rep-
resentation is learned jointly while determining for each task with which other
tasks to share. Tasks are automatically clustered into a predefined number of
task groups with task relatedness being more prominent within each group. Reg-
ularization should then occur for tasks in the same group but not be imposed
on tasks across groups.

[10] tries to learn a small number of latent basis tasks based on the input
features resulting in a parameter matrix L. The observed tasks to be learned
eventually are linear combinations of these latent tasks and represented in a
parameter matrix S which is assumed to be sparse with regards to the latent
tasks. This is ensured by using l1 regularization on S. In contrast, Frobenius



norm is used on L for the latent tasks to avoid overfitting. The resulting cost
function is not jointly convex for L and S, thus an alternating optimization
strategy is applied until convergence.

[5] describes a domain adaption approach that is extendable to a multi-
domain setting in which labeled data is available for all domains, which makes
this domain adaption setting related to multi-task learning. The basic idea is to
take the original feature vector and generate/copy one for each domain (source
and target domain) plus one additional general feature vector. The datasets then
get extended in a way that the source dataset only contains the general and the
source-specific features and the target dataset only contains general and target-
specific features. Using this extended input space, the learning algorithm has
the ability to put increased weight on features which are only relevant to certain
domains by using the domain version of the feature in the coefficient vector or
use the general version if the feature is relevant to both domains.

[8] introduces the tree-guided group lasso approach for sparse multi-task fea-
ture selection regression. The task output structure is represented as a tree with
leaf nodes representing task outputs and internal nodes representing clusters of
outputs. Outputs can be grouped at multiple granularity indicating task relat-
edness. The structure of the tree is either available as prior knowledge or can be
learned from data.

In general, all of the above mentioned approaches select input features di-
rectly. The approach presented in this paper, because it is based on a symbolic
regression algorithm, selects basis functions automatically generated from the
input features by the symbolic regression framework (see Section 3).

Preventing negative transfer was not an explicit goal in our approach. How-
ever, extending our framework with a task grouping capability comparable to
the approaches described in this section, i.e., sharing features between groups
while still allowing for outlier tasks, would be an interesting extension to our
work (see also Section 7).

3 Preliminaries

This section gives a brief introduction to SR, followed by a description of ”Fast
Function Extraction”, the SR framework on which the work presented in this
paper is based on.

3.1 Symbolic Regression

Symbolic Regression (SR) [9] is a kind of regression analysis that searches a
space of mathematical expressions for the purpose of deriving a model that best
fits a given dataset. The mathematical expressions can consist of the datasets
input features (x0, . . . xn), constants (π, e, . . . ), basic arithmetic operations (+,
-, ×, ÷) and mathematical functions (log, exp, . . . ). The actual set of inputs and
operators which the symbolic regression algorithm is allowed to use for building
the model has to be determined before the start of the algorithm. In contrast to



other regression methods, e.g. linear regression, no predefined model is given to
the regression algorithm at the beginning. A symbolic regression algorithm has
to determine both the structure and the parameters of the model from the data.

As a consequence, the search space is much larger when compared to other
regression techniques. Therefore, symbolic regression relies on efficient heuristics
to quickly identify subexpressions which can be combined to form an accurate
model of the data, and eliminate subexpressions that do not contribute to the
overall models performance. In symbolic regression, this is mainly done with
Genetic Programming (GP) [14]. Candidate models are combined and altered
using crossover and mutate operations in order to quickly converge to a (local)
optimum while also covering a large part of the search space.

Symbolic regression research uses GP to such an extent that it is ofter con-
sidered a subfield of GP.

3.2 Fast Function Extraction

Fast Function Extraction (FFX) [11] is a SR framework that does not use GP
for optimization. Unlike a SR algorithm based on GP, FFX does not work on
arbitrary mathematical expression but restricts itself to generalized linear models
(GLM) over a number of basis functions (see equation 1 taken from [11]).

ŷ = m(x) = a0 +

NB∑
i=1

ai ∗Bi(x) (1)

A model m maps an input vector x to an output value ŷ by using a linear
combination of NB basis functions Bi with coefficients ai. Because FFX tries to
solve a SR problem, it has to come up with both the coefficients ai and the basis
functions Bi.

In a first step, FFX generates a hugh amount of linear as well as non-linear
basis functions from the input features before a run. Examples are x1, x2x3,
log x5, x2/x3, exp x5

exp x6
. The challenge is then to efficiently reduce this large num-

ber of basis functions to the ones that are actually useful for building models
which can explain the data. To achieve this, FFX uses Elastic Net (EN) regular-
ization [17], a combination of lasso regularization [16] and ridge regression, for
performing feature selection. The cost function for linear regression with EN reg-
ularization is given in equation 2, with X representing the matrix of the datasets
input features, y the vector of target values and a the vector of regression co-
efficients. λ1 and λ2 are the regularization parameters for ridge regression (λ1)
and lasso regularization (λ2).

‖y −X ∗ a‖2 + λ2‖a‖2 + λ1‖a‖1 (2)

For the purpose of pathwise learning (see next paragraph), EN regularization
is reformulated using one regularization parameter λ and an additional mixin-
parameter ρ ∈ [0, 1] for balancing ridge regression (λ2 = λ(1 − ρ)) and lasso
regularization (λ1 = λρ) (see equation 3).



‖y −X ∗ a‖2 + λ(1− ρ)‖a‖2 + λρ‖a‖1 (3)

In a second step, Pathwise Learning (PL) [4] varies the regularization param-
eter λ from high to low values in multiple iterations. The iterations yield models
of differing complexity depending on λ. With a high λ, EN will only select a
few basis functions and learn a model which is very simple but also has a high
training error. Once λ gets lower, the learned models will get more complex and
have a lower training error. At the end of the regularization path, the set of
learned models represents a trade-off between accuracy and complexity. Simple
models have higher training error but tend to be more robust and more suitable
for interpretation, whereas complex models have lower training error but are not
as easily interpreted and are likely to have higher out-of-sample error.

In a final step, FFX selects the non-dominated pareto optimal models out of
all models generated by the regularization path with respect to model complexity
and accuracy. A model is only retained in the final result set if there does not exist
a different model with equal accuracy but fewer basis functions. This pareto front
is then presented to the user to choose whichever model best fits the intended
application.

Even though our approach described in Section 4 builds on the FFX frame-
work as described in this section, it is important to mention that our approach
is not limited to FFX, but could be combined with any SR framework, e.g., one
that uses a GP approach1.

4 Multi-task Symbolic Regression

In multi-task learning, information from one task is used to improve the perfor-
mance of other related tasks. To achieve this transfer of information, the tasks
are learned in parallel using some kind of shared representation [3]. In our sys-
tem SymReg-MT, the tasks are learned in parallel while each task retains its
own model. The shared representation is achieved by recording joint statistics
about basis function weights of all tasks which are subsequently used to refine
the models in further iterations.

The main idea of our approach is to calculate the frequency of occurrence of
all basis functions (e.g. x3/x4) in the candidate models for all tasks. This is done
after each learning run, i.e., after each iteration in which we learn all tasks in
parallel and independent of each other using the FFX symbolic regression frame-
work. Using the frequency values, each basis function is assigned a weight that
is included in the elastic net regularization term for the next learning run. Thus,
basis functions which appear in the candidate models of many tasks are pre-
ferred over basis functions appearing in only a few tasks. The motivation is that
basis functions appearing in many candidate models have a higher probability of
representing common features. By promoting these basis functions, the learning
algorithm is encouraged to put increased importance on these common features.

1 https://code.google.com/p/deap/



Furthermore, tasks which have not yet included such a feature in their candidate
models are more likely to select it in the next learning run. Task-specific features
have a high weight and are only selected when the performance gain outweighs
the regularization penalty. This is how transfer of common features is achieved
between the multiple tasks.

An initial approach for generating the weights after each iteration involves
the following three steps, which are described in detail in the next paragraphs:

1. Generating weight factors for each basis function,
2. Updating the weight for each basis function using the weight factor,
3. Normalizing the product of the weights to 1.0 before starting the next iter-

ation.

Note that in the approach presented, high weight does not mean high impor-
tance but high penalty, the algorithm tends to select features with low weight/penalty,
features with high weight increase the regularization term and are less likely to
be selected.

Algorithm 1 shows our approach in pseudocode form. Due to the fact that
FFX generates the basis functions it considers for learning on-the-fly, we can-
not initialize the weights of all possible basis functions from the beginning. We
therefore start out with an empty set of weights, and after each FFX run, we
initialize the weights of new basis functions, i.e., basis functions we have not
seen in a prior learning run. The initial value at the first iteration is 1.0, af-
terwards we initialize new basis functions with the median weight of all known
basis functions, in order to prevent new and unproven basis functions from over-
powering established ones. How the weight is adjusted between each iteration
using a weight factor is described in detail in the next paragraph.

In the following, NB is the number of different basis functions and Bj a
basis function with j ∈ {1, . . . NB}. Each basis function is assigned a real-valued
weight wj ∈ [1,Wmax]. At the first iteration, i = 1, each basis function gets a
weight wj := 1, which means the basis function is not penalized at this point.
After each symbolic regression learning run, the weights are multiplied by a real-
valued weight factor fj ∈ [1, 2] which is dependent on the number of occurrence
oj of the respective basis function Bj over all tasks (see equation (4)). Basis
functions with oj = omax get a factor fj = 1, which means they retain their
current weight and are not penalized further. omax is the highest number of
occurrence of all basis functions in the current iteration. Basis functions which
were considered during learning but eventually not selected (oj = 0) get the
maximum factor fj = 2, i.e., their weight is doubled. Figure 1 shows the weight
factor function for a dataset with 20 tasks and an omax = 18. The scale factor
sf in equation 4 determines the steepness of the curve.

fj =
omax − oj

omax(sf · oj + 1.0)
+ 1.0 (4)

The weight of each basis function is then multiplied with the weight factor to
get the weight for the next iteration i. However, a weight can never be higher than



Algorithm 1 High-level structure of SymReg-MT

1: procedure SymReg-MT
2: i← 0 . iteration
3: wi ← ∅ . FFX assigns default weights to new BFs
4: repeat
5: i← i + 1
6: for all tasks do . in parallel
7: run symbolic regression (FFX)
8: perform model selection . with additional degradation prevention
9: end for

10: assign weights to new base functions . median weight of old base functions
11: compute frequency of occurence o
12: generate weight factors f(o) . with omax as reference value
13: wi ← wi−1 · f . update weights from factors
14: until wi = wi−1

15: end procedure

Wmax, which is the maximum penalty for any basis function (see equation (5)).
For our experimental results reported in Section 6, the value Wmax was set to
Wmax := 10.

wi
j =

{
wi−1

j fj , if wi−1
j fj < Wmax

Wmax, otherwise
(5)
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Fig. 1. Example of weight factor fj for omax = 18 and T = 20.

A single run of the FFX algorithm on the dataset for a given task yields the
whole pareto front of models from the poor-performing but simple to the most
accurate but complex ones (see also section 3.2). For results reported later, we



select exactly one model hit for each task t and at each iteration i from the whole
pareto front, according to our initial industrial problem setting. The selection
criterion we use is a maximal training error level RMSEtarget. For each task, we
then select the simplest model (i.e. with the least number of basis functions),
which at the same time achieves the target quality. We used this approach be-
cause our industrial use case, which provided the idea for our implementation,
had this maximum error requirement. In the future, we also plan to apply our
approach in a different way, i.e., aiming for better model quality while keeping
model complexity under a given maximum.

In addition to our target RMSE, there are additional selection criteria, which
make sure that our task models do not degenerate. At a given iteration i, the
model selection retains the model of iteration i− 1 for a certain task t, if one of
the following holds:

– No new model of the current iteration i can reach the target RMSEtarget.
– hit is more complex that hi−1

t

– The selected model hit has the same complexity as hi−1
t but cannot achieve

higher quality, i.e., RMSE(hit) ≥ RMSE(hi−1
t ).

Complexity currently is simply defined as the number of basis functions in
a model, regardless of the complexity of the basis functions appearing in the
model. We intend to refine the definition of model complexity in our framework
in the future (see Section 7).

5 Implementation

In section 4 we presented the basic idea of how the transfer of knowledge between
the different tasks works from one iteration to the next. This explanation was
implementation independent. In this section, we briefly mention some implemen-
tation details of our implementation based on the python framework scikit-learn
[13], which is used by the FFX framework.

We define a maximum number of iterations to perform before the algorithm
terminates to prevent against infinite iterations, although this was not necessary
for any of our experiments. Before starting the symbolic regression learning run
for a given iteration, the weight vector w is normalized using the geometric mean
(GM) of the weights, resulting in wnorm := w

GM(w) such that
∏NB

j=1 wj = 1.

To make the FFX algorithm use the base function weights during feature
selection, we implemented an alternate version of the sklearn elastic net co-
ordinated descent implementation by multiplying the weights w to the model
coefficients a (� denoting element-wise multiplication):

‖y −X ∗ a‖2 + λ(1− ρ)‖a�w‖2 + λρ‖a�w‖1 (6)

For an explanation of the cost function in Equation 6 we refer back to Sec-
tion 3.2.



6 Results

In order to check the viability of our approach, we tested the framework on both
synthetic and real world datasets. The synthetic datasets were generated similar
to the method described in [1]. Both real datasets stem from a project with
one of our industrial partners, we anonymized the names of the input features
in order to protect our partner company’s intellectual property. For both the
synthetic as well as the real world datasets we set Wmax := 10 and sf := T/10,
with T denoting the number of tasks.

6.1 Synthetic Dataset

For generating the synthetic datasets, we assumed a multi-task learning scenario
with T = 20 tasks. There are C = 5 common features cm0, . . . cmC−1 relevant
for all tasks and I = 20 irrelevant features ir0, . . . irI−1. For each of the T
tasks, we created a C-dimensional vector ct (t ∈ {1, . . . T}) from a 5-dimensional
Gaussian distribution with covariance Diag(1, 0.25, 0.1, 0.05, 0.01) representing
the importance of the common features for each task. An I-dimensional vector
it = 0 represents the importance of the irrelevant features. Input feature values
cmt,0, . . . cmt,C−1 and irt,0, . . . irt,I−1 are then drawn uniformly from [0, 1] and
the output (target) for one sample is then calculated by yti = 〈ct, cmt〉+ 〈it =
0, irt〉, with 〈·〉 denoting the scalar product. For each task 10 training samples
and 5 test samples were created. Using the method just described, we created 3
different datasets synth1–3 containing 10+5 samples for each of the T tasks for
testing our algorithm. The reason for the small number of training samples is
to test generalization quality where a task needs to incorporate knowledge from
related tasks.

Figure 2 shows the progression of average model complexity and average basis
function frequency over all 20 tasks. The average frequency is calculated from
all basis functions occurring at least once in any model. While model complexity
is monotonically decreasing in all 3 datasets, basis function frequency increases
abruptly in the first couple of iterations, where many of the irrelevant features
are eliminated.

To get an idea of how the models change from the first unweighted itera-
tion to the final result, table 1 shows the models for 5 selected tasks based on
dataset synth3 at the first and the last iteration. Looking at the first iteration,
which corresponds to a single symbolic regression run without multi-task feature
learning, both common features and irrelevant features are used to fit the mod-
els to the data. By the end of the last iteration, only task number 3 could not
be improved any further and remained to use irrelevant features ir5 and ir10 in
combination with non-linear basis functions. It is worth mentioning, that for the
3 datasets synth1-3, terms including irrelevant features were the exception, the
final models of the majority of the tasks use only common features cm0–cm4,
which also are used by the models in a strictly linear way, i.e. no non-linear basis
functions like, e.g., exp cm1 appeared.
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Fig. 2. Model complexity and similarity for synthetic datasets (T = 20), selecting the
simplest model achieving the required accuracy in each iteration.

These results demonstrate, that by coupling models for similar but differing
individual tasks, less data can be sufficient to select relevant features and obtain
models with testing error similar to models learned in isolation (see section 6.3).
As a consequence, model complexity is lowered, and interpretability of models
can be improved by showing similarity between tasks.

6.2 Real World Datasets

In figure 3, model complexity and basis function frequency is shown over the
whole run for two real world datasets from a parts manufacturing setting, where
the tasks differ by the tools with which a machine was equipped. The tools share
a general shape but differ in their detailed geometry, thus introducing different
but highly related tasks. The problem has 20 input features, dataset real1 has
5, dataset real2 has 3 tasks. The sample size for each of the tasks varies between
21 and 151 samples.

Table 2 shows the evolution of the task models over the first 6 iterations.
The algorithm stopped after iteration 8, but in the last two iterations, only the
coefficients did change slightly, the selected terms stayed the same for all tasks.
The models in the first iteration are the results from single individual symbolic



Table 1. Trace of a SymReg-MT run on synthetic dataset synth1.

Iter. Task Model

1 1 −0.144− 0.102 log cm2 − 0.0880 exp cm3 + 0.0601 exp ir3 + 0.0495 log cm1

3 0.225/(1.0− 0.0818 exp cm2 exp ir5 − 0.0575 exp cm0 exp ir5 − 0.00928 exp ir10)
13 −0.257 − 0.160cm0 exp cm1 + 0.0474 exp ir18/ exp cm1 − 0.0469 exp cm1/ exp cm3 +

0.00234 exp ir18/ exp cm0 + 0.000202 exp ir18/cm0

17 (−0.0967 − 0.529cm0 − 0.0993ir2 + 0.000518cm4)/(1.0 − 0.127ir10 − 0.109cm2 −
0.0564ir8 − 0.0508ir17 − 0.0453ir2 − 0.0309ir9)

19 0.719 + 0.148(ir4)2/ir15 − 0.140√
cm2
− 0.0901(ir15)2 + 0.0858

√
cm2(ir4)2 − 0.0784(ir15)2 −

0.0372
ir5

− 0.0245ir15/cm0 − 0.0102
(ir5)2

12 1 −0.0136− 0.354cm2 − 0.263cm3 + 0.166cm1 + 0.152cm0

3 0.225/(1.0− 0.0818 exp cm2 exp ir5 − 0.0575 exp cm0 exp ir5 − 0.00928 exp ir10)
13 0.0226− 0.489cm0 − 0.345cm1

17 −0.0860− 0.960cm0 + 0.108cm1

19 0.00472 + 1.09cm0 − 0.622cm1 + 0.380cm2
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Fig. 3. Model complexity and similarity for real world datasets, T = 5 (a), T = 3 (b).

regression runs with basis function weight equal to 1. As the iterations progress,
our algorithm promotes common feature x2, the basis function x1 also appears
in 2 out of 5 models. In contrast to the first iteration, there is no task specific
basis function which is used only by one model.

6.3 Model Quality

As described in section 1, we are not primarily interested in using multi-task
learning for improving the model accuracy. However, in figure 4 we show the
change in average model quality as RSME on the testing set between itera-
tions. Because at each iteration we select the simplest model for each task which
meets our target RMSE, the model error is not expected to change much. One
observation with both synthetic (figure 4(a)) and real (figure 4(b)) datasets is



Table 2. Trace of a SymReg-MT run on real world dataset real1.

Iter. Task Model

1 1 0.255 + 0.678x5 + 0.381x3 + 0.160x4 + 0.145x2

2 1.50 + 0.487
√
x7
√
x2 + 0.0463(x3)2

3 0.592 + 0.743x1 + 0.346x2 + 0.190x7

4 0.582 + 1.30x1 + 0.300x2 + 0.123x7

5 1.27 + 1.46x1 + 0.993x5 + 0.560x4 + 0.0513x11 + 0.0115x9

2 1 0.254 + 1.10x5 + 0.189x2

2 0.252 + 1.41x4 + 0.207x2

3 0.335 + 1.05x1 + 0.379x2

4 0.162 + 1.59x1 + 0.363x2

5 1.27 + 1.46x1 + 0.993x5 + 0.560x4 + 0.0513x11 + 0.0115x9

3 1 0.157 + 1.15x5 + 0.203x2

2 0.252 + 1.41x4 + 0.207x2

3 0.335 + 1.05x1 + 0.379x2

4 0.162 + 1.59x1 + 0.363x2

5 0.349 + 3.35x1 + 0.203x2

4 1 0.692 + 0.383x2

2 0.252 + 1.41x4 + 0.207x2

3 0.335 + 1.05x1 + 0.379x2

4 0.162 + 1.59x1 + 0.363x2

5 0.272 + 3.37x1 + 0.218x2

5 1 0.594 + 0.411x2

2 0.960 + 0.444x2

3 0.335 + 1.05x1 + 0.379x2

4 0.162 + 1.59x1 + 0.363x2

5 0.272 + 3.37x1 + 0.218x2

6 1 0.514 + 0.434x2

2 0.705 + 0.517x2

3 0.763 + 0.583x2

4 0.162 + 1.59x1 + 0.363x2

5 0.272 + 3.37x1 + 0.218x2

that model error tends to drop during the first couple of iterations and then in
some cases increases towards the end of a run where the algorithm trades qual-
ity for simplicity and uniformity of the models. Most notably, this can be seen
in figure 4(b) for dataset real1. Many datasets can decrease their error over
the whole learning run without explicitly enforcing this via the cost function
or model selection, but only indirectly by reducing complexity and increasing
similarity of the task models. However, there is a fair amount of randomness
involved in the variation of model performance through the iterations, because
the model selection usually cannot select a model with a training error of exactly
RMSEtarget.
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Fig. 4. Model error (RMSE) at all iterations.

7 Discussion and Future Work

Our approach to multi-task feature learning described in this paper uses a simple
method of weighing base functions solely based on the frequency of occurrence
when looking at the models across different tasks. Together with our safety condi-
tions for preventing model degradation during the later iterations in a SymReg-
MT run, the results on real and synthetic datasets show that our approach can
significantly decrease model complexity of all tasks as well as promote similar-
ity, i.e. common features, between tasks while keeping the prediction quality on
testing data at comparable levels. In many cases, the simpler models also yield
higher model performance. We intend to use our current implementation as a
starting point for investigating several possible improvements.

Our current approach uses a method for model selection based on a pre-
defined target performance. This can lead to a problematic selection of basis
functions. Models which lie close together in the pareto front generated by the
FFX framework can contain completely different kinds of basis functions. Only
a minor change in the target performance can lead to the selection of completely
different basis functions, which can heavily influence the weights of basis func-
tions and thus alter the course of future iterations. In the next version of our
algorithm, we intend to not only select one model for each task, but to con-
sider the whole pareto front of models and all basis functions contained therein.
Furthermore, we intend to include the quality and complexity of models in the
weighing of basis functions, i.e., basis functions appearing in better and/or less
complex models get penalized less. Our current algorithm also does not take into
account the complexity of basis functions itself, meaning that simple linear basis
functions like x1 are considered to be as complex as more complicated ones like,
e.g., the non-linear basis function exp x1

x2
expx3.

Currently our internal shared representation consists of one weight vector
for all tasks. A task-specific feature which is only useful for a single tasks has a
high value in the weight vector and gets selected only when the gain in model
performance outweighs the penalty in regularization. It would be interesting to
investigate ”dirty models” as described in the related work in section 2, which



allows for truly task-specific features only used in one model, e.g., by further
adapting the regularization term the FFX framework uses for regression on the
candidate terms.

As already mentioned, our algorithm has to take additional measures to
prevent model degradation by suppressing specific terms in later iterations. We
intend to address this issue and investigate the way the penalizing weights are
determined, e.g., by deriving it directly from the cost function. The results for the
presented basic approach are encouraging to continue working in this direction.

Besides improving the existing algorithm, another topic of further investiga-
tion concerns the application to completely new tasks, by interpolation of coeffi-
cients between directly neighboring tasks as determined, e.g., by tool geometry.
As adjacent models are similar to each other and share common features after a
learning run, this opens the possibility to interpolate the feature coefficients for
an unknown task in between. Finally, as already mentioned in Section 4, we plan
to apply our approach in a different way, i.e., aiming for better model quality
while keeping model complexity under a given maximum.

Acknowledgments. This work has been supported by the State of Upper Aus-
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