
GPU-Based Image Processing Use Cases:
A High-Level Approach

Volkmar WIESER a,1, Clemens GRELCK b, Holger SCHÖNER a Peter HASLINGER a

Karoly BOSA c, and Bernhard MOSER a

a Software Competence Center Hagenberg, Software Park 21, Hagenberg, Austria
b University of Amsterdam, Science Park 904, Amsterdam, Nederlands

c Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

Abstract. This paper addresses the gap between envisioned hardware-virtualized
techniques for GPU programming and a conventional approach from the point of
view of an application engineer taking software engineering aspects like maintain-
ability, understandability and productivity, and resulting achieved gain in perfor-
mance and scalability into account. This gap is discussed on the basis of use cases
from the field of image processing, and illustrated by means of performance bench-
marks as well as evaluations regarding software engineering productivity.

Keywords. Hardware Virtualization, Functional Programming, Software Engineering
Productivity

Introduction

This paper focuses on the parallelization of image processing algorithms, as there is a
growing demand for performance improvements in order to meet the required perfor-
mance criteria as they are encountered for example in quality inspection systems. How-
ever, for application engineers developing such algorithms not only the performance is
of interest, but also the scalability, maintainability, understandability and productivity as-
pects need consideration. From the methodological problem solving point of view there
is an increasing complexity [2] in terms of heterogeneity of involved mathematical con-
cepts like low-level filtering techniques with complexity known in advance and content-
dependent procedures e.g. for segmentation, clustering and classification. In order to
exploit the computational power of emerging parallel processing hardware components
there is an increasing complexity in terms of specifying a sound and optimal execu-
tion model taking various relevant aspects like memory and thread management as well
as inter-device communication into account. In order to tackle the software engineer-
ing challenges posed by these complexity aspects a high-level programming paradigm
based on hardware virtualization is desirable which avoids the application engineer to be
involved in hardware specific details.

The central question addressed in this paper is, what is the trade-off between the
gain with respect to maintainability, understandability and productivity and performance

1Corresponding Author: Industrial Researcher, Softwarepark 21, 4232 Hagenberg, Austria; E-mail:
volkmar.wieser@scch.at



when applying conventional versus advanced programming concepts which support
hardware virtualization. This question is tackled by making a comparative study by
means of two image processing related methods, and representatives for the alternative
programming paradigms that is conventional based on manually optimized GPU code on
the one hand, and GPU code generated by means of the high level programming language
Single Assignment C (SAC, [10]).

In Section 2 we discuss hardware virtualization in general, particularly concepts re-
lying on SAC are introduced. GPU-based image processing use cases related to prepro-
cessing based on an anisotropic duiffusion filter [14] and classification by means of a
single class support vector machine [17], [20] are introduced . For these use cases, based
on the NVIDIA CUDA framework two alternative implementations related to a manually
code optimization and a high-level programming approach based on SAC are presented.

Experiences and benchmarks substantiate the potential of the high-level approach
even if there is still sometimes a gap in achieved performance. Above all, the drawback
of the remaining performance gap is compensated by the gain of overall software engi-
neering productivity which gives reason to use the outlined high-level approach even at
the current level of development.

1. Related Work

The industry standard for programming NVidia GPUs is CUDA [7]. CUDA is a vendor-
specific, architecture-specific and, hence, very low-level API. It allows the experienced
programmer to adapt a program to the architectural pecularities of GPU processing and
to achieve high performance if effort is not a big concern. However, software engineering
on this level of abstraction is tedious and cumbersome. If CUDA marks one end of the
spectrum of GPU programming, then SAC [10] marks the other. SAC programs remain
completely architecture-agnostic and it is solely up to compiler and runtime system to
make efficient use of GPUs where and when present [11]. An analysis of the trade-off
between peformance and productivity is the subject of this paper.

In between CUDA and SAC a number of other approaches aim at facilitating GPU
programming. OpenCL [18] was originally proposed by Apple and is now promoted by
AMD as the only major manufacturer of both multi-core CPUs and GPUs, in particular
for its upcoming Fusion architecture that will soon combine both worlds on a single chip.
OpenCL is only marginally more abstract than CUDA. Programmers defines computa-
tional kernels, which can be executed on different kinds of GPUs and even on multi-core
CPUs. OpenCL abstracts from concrete architectural features and instead uses a machine
model that captures essential properties of today’s GPU-enhanced computing systems
across individual manufacturers and models. Nonetheless, programmers are concerned
with a variety of machine-level details that lower productivity.

OpenMP [5] has a track record of facilitating programming of symmetric shared
memory systems (multi-core, multi-processor) through compiler directives. The Open-
MPC [13] project aims at generating CUDA code from eligible standard OpenMP di-
rectives. This approach is particularly attractive if application code is already equipped
with OpenMP directives. Still, OpenMP is on a much lower abstraction level than SAC.
We want to mention a recent proposal to extend OpenMP by clauses for the explicit
placement of computations on the host or an a GPGPU [3].



Last not least, HiCuda [12] is another compiler-directive based approach to pro-
gramming NVidia GPUs. It essentially imitates the OpenMP approach for symmetric
multicores and proposes a tailor-made directive language for Cuda-enables GPUs. Tech-
nicall, HiCuda does indeed simplify GPU programming, but nonetheless exposes the
same variety of architectural features as CUDA. Programmers need to make all relevant
design decisions in application engineering, but can express them much more concise
than when using vanilla Cuda.

2. Hardware Virtualization

The multicore revolution has brought an unprecedented diversity of hardware to main-
stream computing. The same software is supposed to make efficient use of small num-
bers of powerful cores as is characteristic for current Xeon and Opteron processors as
well as of large numbers of less powerful hardware threads as in the SUN/Oracle Niagara
processor family. A variable number of such processors may be combined into a single
server system. Graphics accelerators may be present or not on the system level. And in
the near future we will face heterogeneous systems-on-chip that combine aspects of con-
ventional multi-core processors with properties of graphics cards like the AMD fusion
architecture.

Writing explicitly parallel code for each and any of these architectures for each and
any relevant part of a software system in theory would yield the best possible perfor-
mance, but is highly uneconomical. Furthermore, high performance is often not even
achieved in practice because of unavailability of highly skilled and motivated program-
mers or simply time-to-market constraints that rule out necessary manual optimization.

Looking back into the history of computing one must admit that heterogeneity of
computing architectures is actually not a new development of the many-core era. Many
different instruction set architectures have come and gone over the years. Even within one
ISA, say x86, countless variations and generations exist. However, since the early days
of computing, high-level programming languages, starting with Algol, Pascal, Fortran,
Lisp or C, have shielded the application programmer from such low-level details as the
concrete instruction set architectures.

The trouble of programming in the multicore era is that for various reasons pro-
grammers stick to the languages that served them well in the years before. In this pa-
per, however, we will explore ways to virtualize multicore and many-core hardware in
a similar way as high-level programming languages virtualized instruction set architec-
tures. By raising the level of abstraction in expressing program code, just as high-level
programming languages did 40 years ago compared with machine specific assembly,
we employ the implicitly parallel programming language SAC to abstract from concrete
properties of parallel hardware. Single Assignment C (SAC) is a strict, purely functional
programming language, which is well suited for array based applications like image or
signal processing as well as numerically intensive computations. One of the key ben-
efits is the combination of high-level language constructs with a similar performance
of manual-optimized low-level modules. SAC is a combination of C/Matlab-style syn-
tax and is designed in order to support high-level multi-dimensional stateless array pro-
cessing. The SAC compiler automatically generates competitive code for homogeneous
multi-core/multi-processor systems [9] as well as for NVidia graphics accelerators [11].



In the same way as an expert assembly programmer can often write more efficient
code than what is generated by a compiler, one of the interesting questions we pursue in
this paper is the price that we need to pay for higher productivity in software engineering.
We are confident that in the same way as today only tiny parts of software systems are
coded in assembly we will see the same for parallel software in the future.

3. Industrial Applications

In the field of industrial quality inspection for endless materials like foils or industrially
woven fabrics we have to cope with noisy textured surfaces with highly complex faults
phenomenology on the one hand and with a high-speed manufacturing process which
defines high requirements for computer hardware and software on the other hand. The
need for cost-intensive algorithms for image processing as well as machine learning is
given due to the complex phenomenology of textures and defects. Therefore, in order
to achieve the industrial performance criteria we have to use multi/many-core systems
and high-performance computational hardware like GPUs. Furthermore, it is typically
necessary to re-design the applied methods using parallelization techniques.

To demonstrate the applicability of SAC especially for rapid parallel application
development, two methods of the processing pipeline (image acquisition, pre-processing,
feature extraction, registration, defect detection and classification) of a visual quality
inspection system are benchmarked, i.e., preprocessing using the anisotropic diffusion
filter and classification using the decision function of the support vector machine.

3.1. Preprocessing with Anisotropic Diffusion

Essential factors for robust and reliable defect detection are the enhancement of defects
like scratches or blowholes and at the same time the attenuation of environmental influ-
ences, e.g., irregular reflections, noise or dust. Defect enhancement is supported by the
Perona-Malik anisotropic diffusion filter [14], whose principal characteristic is to reduce
noise and concurrently enhance higher contrast regions.

The data-independent characteristic of the anisotropic diffusion filter allows an ob-
jective performance analysis for manually coded as well as automatically SAC generated
GPU code. The benchmarking results are presented in chapter 5.

3.2. Classification with One-Class Support Vector Machine

Support vector machines are based on the concept of separating data of different classes
by determining the optimal separating hyperplanes [19]. The main idea behind support
vector machines - and its distinctness to other learning algorithms - is the method of
structural risk minimization. Instead of optimizing the training error (which often leads
to the problem of over-fitting), the attention is turned to the minimization of an estimate
of the test error [16]. Due to the underlying generalization concept SVMs have become
widely used learning methods which provide state-of-the art solutions for various ap-
plication areas, e.g. text categorization, texture analysis, gene classification and many
more.

Typically, the SVM is a supervised learning algorithm working on two classes (bi-
nary classification, see also [16]). But for industrial quality inspection, where mostly



large amounts of good samples are available and just a small fraction of possible defects
are known, the application of an outlier-detection version has been proposed (one-class
or single-class SVM, see [17] and [15]). The training of the one-class SVM (OC-SVM)
is performed on a set of positive samples and during the classification step anomalies are
detected.

Often image processing applications are time critical systems, e.g. in-line process
control, where speed can be a limiting factor for usability. So the most essential part is the
speed-up of the classification step, therefore a parallelization of the following decision
function was considered:

f(x) = sgn(∑
i

αik(xi,x) − ρ), (1)

where x is a new sample that needs to classified. The kernel function k(., .) can
be seen as similarity measure between the new sample point and the support vectors
xi (a sub-set of the good samples from training, describing the outer sphere of of the
data cluster). The parameter ρ (decision boundary) and the non-zero weights αi (of the
according support vector xi) are determined during the training phase.

For further details on the determination of the parameters and support vectors, and
on possible kernel choices (polynomial, Gaussian radial basis function, etc.) see [16]
and [6].

4. Experiences

Based on developer statements, we want to evaluate various key values, i.e., programma-
bility, understandability, productivity, maintainability, IDE support and CPU/GPU exe-
cution time, during an application development life cycle using C, Matlab, CUDA and
SAC. As a starting point C programming skills are rated as neutral to allow the compar-
ison of the characteristics with other tools, languages and frameworks.

programmability understandability productivity maintainability IDE support
execution time
CPU GPU

C ○ ○ ○ ○ ○ ○ ○

Matlab + ○ ○ + ++ −− ○

CUDA − − −− ○ + ○ ++

SAC ○ ○ ++ ++ −− ○ +

Table 1. Pros and cons of applied tools, languages and frameworks regarding various application development
aspects

Basically, each language has more or less a similar programmability and understand-
ability because of existing assets and drawbacks in specific application fields, e.g., Mat-
lab is a simple to use programming language but normally the developer has no knowl-
edge about the internal optimization strategies. For CUDA development the developer
needs expertise in hardware architecture and parallelization techniques. Having program-
ming skills in C, SAC is easy to learn and provides the programming comfort of Matlab,
e.g., auto-parallelization feature or no pointer arithmetic.

For rapid prototype development Matlab offers a high productivity but in sev-
eral cases a re-design/re-implementation using a more efficient language/framework is



needed. By using SAC it is possible to auto-generate code for the mentioned platforms,
especially useful if the performance criteria of a project have changed. This is also
an advantage concerning maintainability because hardware architecture changes, e.g.,
updating NVIDIA GeForce 8800 to NVIDIA Fermi architecture, only requires a re-
compilation.

A drawback of SAC is the lack of an integrated development environment (IDE
support), which means that debugging, code analysis, benchmarking, etc., can only be
done via the command line, whereas the other tools, languages and frameworks offer
consistently well-engineered tool support.

The execution time on CPU and GPU depends on several influence factors, e.g.,
hardware environment, parallelization strategies or concurrent processes that primarily
occur in industry. However, in general the SAC performance on CPU is as good as the
performance of C if no optimization framework is used (e.g., OpenCV, IntelIPP, etc.).
Typically, the highest performance can be achieved with manually written CUDA code
(there are only some exceptions) but in some cases SAC is able to surpass manually writ-
ten CUDA code due to whole program optimization and consistently optimized paral-
lelization strategies, especially for array-based algorithms.

5. Benchmarks

The benchmarks should demonstrate the current performance of auto-parallelized CUDA
code generated by SAC-CUDA and of manually optimized CUDA code. For the bench-
mark tests a SONY VAIO™PCG-81112M with an Intel®Core™i7-740QM Processor,
8GB RAM and a NVIDIA GeForce GT 425M graphic card is used. The operating system
is Ubuntu 10.10 with installed CUDA 4.0 and SAC_1.00_17510 frameworks.

5.1. Benchmarking Anisotropic Diffusion

The dimension of the input data for the anisotropic filter range from 256 × 256 pixels
to 4096 × 4096 pixels with pseudo-randomly generated 8-bit values between 0 and 255
since in this example only the dimension of the data affects the execution time.

Table 2. Benchmarking results of support vector machine of manual-coded CUDA code and SAC-CUDA pro-
duced code on NVIDIA GeForce GT 425M

image dimension
execution time

SAC-CUDA CUDA speedup
px256 × px256 0.012 sec 0.040 sec 3.3×

px512 × px512 0.018 sec 0.047 sec 2.6×

px1024 × px1024 0.070 sec 0.075 sec 1.07×

px2048 × px2048 0.260 sec 0.180 sec 0.69×

px4096 × px4096 1.821 sec 0.607 sec 0.33×

The presented benchmark results in Table 2 demonstrate that by increasing the
amount of data, the performance decreases. For small datasets the manually written code
has a slight initialization overhead whereas for huge datasets the initialization part of
the application has lower influence on the execution time. Especially for huge amounts
of data the manually optimized code can prove its superiority against auto-parallelized
CUDA code.



5.2. Benchmarking One-Class SVM

A comparison of the two parallelized versions of the decision function (see Equation (1))
will be shown. The manual optimized implementation of the GPU-based OC-SVM Clas-
sifier is based on a third-party C-Support Vector Classification implementation called
GPUSVM [4]. For processing SVM data in parallel on GPU-devices, the applied clas-
sification algorithm employs Map Reduce [8] techniques proposed by Google as well
as a GPU-vendor supplied Basic Linear Algebra Subroutines (CUBLAS). The developed
GPU-based OC-SVM classifier is able to read LIBSVM data format, hence, LIBSVM
can be used for the training of the SVM models (and providing support vectors for it).

For the presented test results (shown in Table 3), some publicly available data sets
were used from the LIBSVM data sets repository [1]. Since this data repository does not
contain data sets for OC-SVMs, we took binary sets and generated training data sets with
certain size (300 samples), consisting of data belonging only to one class. A simplified
training with the standard settings of LIBSVM was performed, using the Gaussian RBF
kernel with γ = 1/n (where n is the number of features of the input vectors) and ν = 0.5.
For an explanation of these parameters see [16].

Table 3. Benchmarking results of support vector machine of manual-coded CUDA code and SAC-CUDA pro-
duced code on NVIDIA GeForce GT 425M

data sets # of test data # of features # of training data
execution time

SAC-CUDA CUDA speedup
a1a 30956 123 300 0.229 sec 0.320 sec 1.39×

a9a 32561 123 300 0.243 sec 0.336 sec 1.38×

australian 690 14 300 0.190 sec 0.230 sec 1.21×

w8a 49749 300 300 0.249 sec 0.389 sec 1.56×

Table 3 shows that there is a direct relation between the number of test samples
and the speed-up factor. This holds also true for the number of features each data set
consists of. A straightforward conclusion is, that larger chunks of data can be better
handled by the SAC-CUDA -implementation. This is explainable due to the relatively
simple composition of the parallelized decision function, which is more or less just a
summation of terms.

6. Conclusion

In the field of industrial quality inspection we have to cope with noisy textured surfaces
and a highly complex faults phenomenology and with a high-speed manufacturing pro-
cess which demands high requirements for computer hardware and software. Therefore,
in this paper the language Single Assignment C (SAC) was evaluated with respect to im-
age processing and machine learning applications concerning runtime performance and
software engineering aspects. Compared to other languages, SAC has a similar syntax
like C and provides the programming comfort of Matlab, e.g., auto-parallelization fea-
tures and no need for pointer arithmetic. Hence, during the software engineering life cy-
cle SAC can assist the developer to achieve efficient development of performance crit-
ical software parts. From the economical point of view, SAC provides a good balance
between time of development and performance.



However, a detailed analysis of the generated SAC machine code has still to be
performed. Additionally further improvements are necessary to reduce the performance
gap in several cases.

References

[1] LIBSVM Data: Classification, Regression, and Multi-label. http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/.

[2] G. Aubert and P. Kornprobst. Mathematical problems in image processing. Springer, 2006.
[3] E. Ayguade, R. Badia, D. Cabrera, A. Duran, M. Gonzalez, et al. A proposal to extend the openmp

tasking model for heterogeneous architectures. In M. Mueller, B. de Supinski, and B. Chapman, ed-
itors, Evolving OpenMP in an Age of Extreme Parallelism, 5th International Workshop on OpenMP
(IWOMP’09), Dresden, Germany, volume 5568 of Lecture Notes in Computer Science, pages 154–167.
Springer-Verlag, 2009.

[4] B. C. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training and classifica-
tion on graphics processors. Technical Report UCB/EECS-2008-11, EECS Department, University of
California, Berkeley, Feb 2008.

[5] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared Memory Parallel Program-
ming. MIT Press, 2007.

[6] N. Cristianini and J. Shawe-Taylor. Support Vector Machines and Other Kernel-based Learning Meth-
ods. Cambridge University Press, 2000.

[7] David B. Kirk, Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, 2010.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM,
51:107–113, January 2008.

[9] C. Grelck. Shared memory multiprocessor support for functional array processing in SAC. Journal of
Functional Programming, 15(3):353–401, 2005.

[10] C. Grelck and S.-B. Scholz. SAC: A functional array language for efficient multithreaded execution.
International Journal of Parallel Programming, 34(4):383–427, 2006.

[11] J. Guo, J. Thiyagalingam, and S.-B. Scholz. Towards Compiling SaC to CUDA. In Z. Horváth and
Viktória Zsók, editors, 10th Symposium on Trends in Functional Programming (TFP’09), pages 33–49.
Intellect, 2009.

[12] T. Han and T. Abdelrahman. hiCUDA: A High-level Directive-based Language for GPU Programming.
In 2nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2), Washing-
ton, USA, pages 52–61. ACM, 2009.

[13] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and Tuning for GPUs. In
ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC’10), New Orleans, USA. IEEE, 2010.

[14] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

[15] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution. Neural Comput., 13:1443–1471, July 2001.

[16] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond (Adaptive Computation and Machine Learning). The MIT Press, 2001.

[17] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt. Support vector method for novelty
detection. Advances in Neural Information Processing Systems, 12, 2000.

[18] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, S. Miki, and S. Tagawa. The OpenCL Programming
Book. Fixstars, 2010.

[19] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998. forthcoming.
[20] R. Vert and J.-P. Vert. Consistency and convergence rates of one-class svms and related algorithms. J.

Mach. Learn. Res., 15:817–854, 2006.


