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Abstract

This paper discusses online monitoring production pro-

cesses based on multi-channel sensor data. Particularly the

problem of transient and anomaly detection is addressed for

which a processing framework consisting of a preprocess-

ing module and a reasoning engine is outlined. While there

is much theory available in the literature for the reasoning

engine this is not the case for the preprocessing which mas-

sively depends on the physical interpretation and semantics

of the data. The paper addresses these problems and pro-

poses new normalization concepts based on regularization

especially for making transients of multi-channel data com-

parable and adequate for further processing by a reasoning

engine. A proof of concept is demonstrated by means of real

data from an injection moulding process.

1 Motivation

The motivation for this study is the idea to check the

quality of products produced by means of an injection

moulding process indirectly by monitoring sensor data from

the moulding machine rather than measuring various rele-

vant parameters of the produced product directly which in

this case would be too expensive. The mechanisms leading

to anomalies are for example defects in heating, parts stick-

ing to the moulding form, changes in production parame-

ters like the target temperature of certain machine parts, and

changing environment conditions like humidity and draft.

In this application context it is crucial to detect devia-

tions from a steady state of the machine in order to get infor-

mation about possible negative impacts on the quality of the

resulting products. For classifying the actual status of the

machine, whether the process shows a steady normal state,

a transition from one normal state to another one or whether

the machine behaves in an abnormal relevant manner, a rea-

soning engine is necessary which takes all the available sen-

sor data together with its statistical features into account and

aggregates all this information to a scalar valued degree of

instability. There is an extensive literature available con-

cerning extracting statistical features from time series in-

cluding outlier detection, see e.g., [1, 2, 3, 4, 5, 6, 7] on the

one hand and just as well for the design of reasoning en-

gines in the context of process monitoring, see e.g. [8, 9]

and related literature in the context of approximate reason-

ing and knowledge-based systems, see e.g. [10]. The men-

tioned literature mainly deals with single channel problems

or is restricted to post hoc analysis of the time series which

would not allow an online classification of the actual status

of the process.

Especially for online transient classification a concept

for evaluating gradients, let call it normalized gradient mea-

sure is needed that is at least invariant with respect to linear

transforms of the time series. This means that G(f(.), t) =
G(α + βf(.), t), where G(f(.), t) models the normalized

gradient measure of the signal f at time t.

Such invariant properties are necessary to keep the com-

plexity of the reasoning engine in a reasonable range, oth-

erwise in the worst case for any combination of transform-

parameters of a channel thresholds and other parameters in

the reasoning engine have accordingly to be adapted which

might lead to a combinatorial complexity. A further crucial

invariance property is comparability across different chan-

nels which might be modeled by means of an evaluation

measure

µtrans : F × T → [0, 1]

that reflects to which degree a sensor signal f ∈ F at time

t ∈ T is in a transient status. Then this comparability prop-

erty can be formulated by

G(f, tf ) = G(g, tg)⇒ µtrans(f, tf ) = µtrans(g, tg). (1)

Obviously, the standard gradient does not meet these invari-

ant conditions. After recalling some basic related work in

Section 2, the paper focuses on proposing a concept for such

a normalized gradient measure G, which is discussed in Sec-

tion 3. With Section 4 the paper concludes with an exper-



imental proof of concept for sensor data from a moulding

process.

2 Model based anomaly detection

This section recalls two standard approaches for detect-

ing untypical signal behaviors like jumps and peaks in a

time series by looking for significant deviations from the

predictions of a model.

2.1 Sliding Regression with error bars

Sliding Regression denotes an algorithm, which allows a

polynomial curve fit to be efficiently updated online, i.e. for

each new sample available for a channel, while older points

have an exponentially decaying weight. This model also

computes a confidence band around its predictions, and then

determines, whether a new point lies within this confidence

band.

The modelling procedure The basis for sliding regres-

sion models is the linear regression of the sampled chan-

nel values ~y =
(

y1, . . . , yN

)T
on the time variable t, with

t = N being the last sampled time. The function fitted is

the polynomial

f(t) = β0 + β1t + β2t
2 + ... + βntn. (2)

The fit is performed by choosing the parameters ~β to mini-

mize the squared error

N
∑

t=1

(

yt − f(t)
)2

(3)

The solution for this optimization problem is, cf. [11]:

~β = (XT X)−1XT ~y (4)

where X is the N × n regression matrix:

X =











1 1 12 . . . 1n

1 2 22 . . . 2n

...
...

...
. . .

...

1 N N2 . . . Nn











.

Each column j corresponds to one parameter βj−1, and

each row i to one of the available sample times i ∈
{1, . . . , N}.

For the online case it is more efficient to update the re-

gression model with new incoming samples, rather than to

re-estimate with the complete amount of data. Furthermore,

we are actually interested in local models fitting only the

last sampled values and not the whole time series, to model

the current trend in the data. When using an exponential de-

cay of the weight of older samples, both ideas can be com-

bined. Letting λ < 1 denote the factor for the exponential

decay, the cost in (3) is modified to

N
∑

t=1

λN−t
(

yt − f(t)
)2

(5)

The online version of (4), for updating the parameter vector
~β (for each newly arriving sample N + 1), is, cf. [12, 13]:

~β ←− ~β + ~γN

(

f(N + 1)− ~rT
N+1

~β
)

, (6)

with the new row ~rN+1 in X

~rN+1 =
(

1, N + 1, (N + 1)2, . . . (N + 1)n
)T

, (7)

the correction vector

~γN =
PN~rN+1

λ + ~rT
N+1

PN~rN+1

, (8)

and the update of the matrix P = (XT X)−1:

PN =
1

λ

(

I − ~γN−1~r
T
N

)

PN−1. (9)

To achieve good convergence to the optimal parameter val-

ues, the starting values for P0 should be αI , with α being a

large constant, and ~β should be initialized with zeros. For

two reasons, the degree n of the polynomials was set to a

low value. One is, that polynomials of low degree can be

fitted faster than those of higher degrees; the other is, that

several of the analyzed channels are highly noisy, which

could lead to overfitting with low values of λ and higher

values of n.

Computation of the confidence band To determine,

whether a deviation of a newly observed value from the

prediction of the sliding regression model is significant, the

confidence band of the model is computed, cf. [14, 15]. For

the new sample N + 1 the upper and lower boundaries are

f(N + 1)±
√

diag
(

cov
(

f(N + 1)
)

)

, (10)

with the following definitions:

cov
(

f(N + 1)
)

= ~rN+1cov(~βN )~rT
N+1, (11)

cov(~βN ) = σ̂2
NPN . (12)

σ̂2
N can be estimated by:

σ̂2
N =

∑N
t=1

(

yt − f(t)
)2

N − deg
,



where “deg” is the number of parameters, here the polyno-

mial degree plus 1, ie. n + 1.

The linear parameters ~β and the matrix P are adapted

according to (6) and (9), while σ̂2 can be updated by

σ̂2
N =

(N − 1− deg)σ̂2
N−1

+
(

yN − f(N)
)2

N − deg
. (13)

Thus, the confidence band can be updated on-line together

with the rest of the sliding regression model.

The decision, whether a newly available sample repre-

sents an anomaly, is made based on the size of the devia-

tion of the measured signal value from the predicted signal

value, relative to the computed confidence band. The larger

the value

|yN+1 − f(N + 1)|
√

diag
(

cov
(

f(N + 1)
)

)

(14)

is, the more likely it is, that the new sample is an outlier.

2.2 Online prediction with adaptive AR
models

To allow detection of anomalies in time series with de-

pendencies other than learnable by the polynomial model

described above, we implemented the same approach, but

using AR (auto-regressive) models [16] instead of Sliding

Regression models. These models are often used to model

time series data, and use a linear combination of previous

values to predict new ones:

f(t) = β0 + β1yt−1 + β2yt−2 + . . . + βmyt−m, (15)

where m denotes the degree of the AR model, ie. the maxi-

mal time delay or number of past values used for prediction.

For AR models, the function f is again linear in the

model parameters ~β, and the techniques for Sliding Regres-

sion models (recursive least squares, confidence bands) can

be used for them as well, when changing the regression ma-

trix X to

X =











1 ym ym−1 . . . y1

1 ym+1 xm . . . y2

...
...

...
. . .

...

1 yN yN−1 . . . yN−m











,

and the regression vector ~r for the recursive adaptation to

~rN+1 = (1, yN+1, yN , . . . , yN+1−m)T . A new predic-

tion is obtained by substituting the last m points into (15)

and comparing the predicted value with the measured one

by (14).

3 Normalized transient measure

Let us start with a local linear fit f to the last M samples

~y =
(

yN−M+1, . . . , yN

)T
yielding the function

f(t) = β0 + β1t (16)

with the parameters β0 and β1. Further let us consider the

regression matrix XN according to (4),

XN =











1 N −M + 1
1 N −M + 2
...

...

1 N











.

Because XT X may be singular (or badly conditioned), let

us modify (4) by a regularization term (see [17], ’ridge re-

gression’) which yields

~β = (XT X + αI)−1XT ~y, (17)

where ~β = β0, β1 and α is the regularization parameter For-

mula (17) can be looked at as a numerical stable approxima-

tion of the gradient which also is not a normalized gradient

measure in the sense as outlined in Section 1.

Our proposed normalized transient measure G is con-

structed in two steps:

[S1] The gradient β1 is transformed to β′1 ∈ [0,∞) taking

the quality of fit of the linear model and other parame-

ters into account.

[S2] The range of β′1 is normalized to the unit interval by

some monotonic mapping ι : [0,∞)→ [0, 1].

Step [S1] relies on the following transformation

β′1 =
√

M

√

1 + nhigh

(

|β1|
/

σN

)2

1 +
(

eN

/

σN

)w (18)

where M denotes the window size, nhigh some compensa-

tion factor which refers to long continuing transients (see

item ’Continuation of Long Transients’ below), σN denotes

some measure for the standard deviation (see item ’Vari-

ance’ below), eN denotes a quality measure of the linear fit

and w some weighting parameter.

In the following we discuss various aspects being rele-

vant for this proposed normalization concept and give some

heuristic arguments for special choices of parameters:

Window size Note that the detection of trends is less sen-

sitive to random fluctuations in the channel when the win-

dow size M of the fit is larger. This leads to a multiplication

of the gradient value (17) by a factor monotonous in M . We

choose as factor
√

M to reduce the influence of enlarging

the window size, if it is already large.



Continuation of long transients In case of long continu-

ing transients we argue that the conditional probability is

rather high that the transient will further continue rather

than abruptly breaking down. A multiplication of (17) by
√

1 + nhigh takes this into account where nhigh is the num-

ber of preceding time steps, in which transients were de-

tected without interruption.

Variance Some measure of the average deviation of new

channel values from the mean of recent values can be used

for normalization; for channels with highly fluctuating val-

ues, an observed small gradient is less probable to be signif-

icant, than for a channel with very little noise. This measure

of deviation or variance is denoted as σN (for time N ) in the

following, and might be e.g. the standard deviation. We use

the exponentially weighted mean absolute deviation from

the moving average µt instead, to achieve less sensitivity to

outliers:

σN = cσσN−1 + (1− cσ) |yN − µN−1| (19)

µN−1 = cµµN−2 + (1− cµ)yN−1, where (20)

µ1 = y1, σ1 =∞, σ2 = |y2 − y1|,

with appropriately chosen cσ and cµ.

Fit quality Another characteristic used for normalization

is the current error of the linear model fit eN , by dividing

the current transient measure value by (1 + eN ). This as-

signs less importance to the transient measure in regions

where the underlying model does not fit well. For sake of

less sensitivity to outliers we prefer the mean absolute pre-

diction error in the fit window of the last M channel values
1

M

∑N
t=N−M+1

|f(t)− yt|. Additionally we use a parame-

ter w for weighting this fit quality by taking it to the power

of w, i.e., ew
N .

Absolute value In our application, it usually does not

matter whether a transient is occurring with rising or falling

values; for this reason we only take the absolute value of the

transient measure value into account when comparing it to

an appropriately chosen threshold.

Determination of threshold In the second step, [S2] the

so transformed gradient has to be normalized to the unit in-

terval by some function ι(.) which we model by a function

ιθ1,θ2
(.) (several choices are possible here; our definition of

ιθ1,θ2
(.) is given in the appendix) that is parametrized by

threshold parameters θ1 and θ2,

θ1 = cthresh quantile
(

B, q
)

(21)

B =
(

β′1(N −MB), . . . , β′1(N − 1)
)

, (22)

where β′1(t) denotes the β′1 computed for the tth data point

(for t < 1 these are initialized with a configured constant

β′def).

To allow the transient detection to work for a diverse

range of channels, we determine the threshold s for com-

parison with the normalized transient measure adaptively

(cf. the appendix). A list B of the last MB observed gra-

dient values is kept.1 Each new gradient value replaces the

oldest one in this list. The current threshold is then deter-

mined by computing a quantile q of this list, e.g. the median

q = 50%. This quantile reflects expectations about the frac-

tion of instabilities during the time represented in B. The

lower this value, the more (or longer) instabilities can occur

without raising the threshold manifestly. On the other hand

this can lead to many overdetections, when in reality there

are not as many instabilities as expected. To compensate

for this, the threshold determined by the quantile is multi-

plied by a configured factor cthresh, before comparing it with

the actual normalized transient measure values using ι(.).
The so transformed gradients are values from the unit inter-

val and can be aggregated by e.g. fuzzy logical connectives

within an reasoning engine.

Due to this transformation of the original gradient the

normalized gradient measures G can further be processed

in the reasoning engine on a more abstract and logical

level which also allows the integration with other methods

like the ’jump’ detection provided by the sliding regression

method.

4 Experimental results

The system described in the previous sections was devel-

oped for instability detection in a variety of injection mould-

ing machines. Data are sampled from the available channels

once for each part produced, and contain information about

configuration settings, timing, forces and pressures, temper-

atures, speed, and dimensions, among others. The configu-

ration of the method parameters used for the following plots

is given in the appendix. Several channels contain mainly

instabilities manifesting themselves as more or less obvious

jumps (Panel 3 in Fig. 1); these can be detected quite well

using the sliding regression.

Some other channels, containing mostly smooth curves

with transients (Panel 2) or even mixtures of transients and

single outliers or jumps (Panel 1), are harder to analyze; hu-

man experts also have difficulties to tell, which parts should

be considered to be irregular. Examples are: (i) After the ex-

treme shift of the channel values between samples 31 and 37

in Panel 1 (which are shown only cropped in the plot), the

transient method is reset2 and it takes some samples until it

1And it is initialized with a configured value β′

def, chosen manually not

to give too many false detections on a variety of different channels.
2Which is technically necessary to avoid long phases of overdetection
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Figure 1. Examples of method performances on injection

moulding data. The samples are placed along the horizontal

axis, the vertical axis shows the channel values. Instability

predictions by the different methods are overlaid, with 0 (no

instability) at the bottom and 1 (almost certain instability) at

the top of the plot; an example for an alert threshold of 0.5

is also shown. Black solid lines with “+” marker: chan-

nel data, Dark solid lines: transient detection, Light grey

lines: Sliding regression method, Light grey dashed lines:

AR method.

can work again (sample 42). (ii) The length of the transient

in Panel 1 (especially when considering only past values);

is it finished at sample 70, or (as detected by the transient

method) around sample 170? (iii) The transient at and after

sample 400 in Panel 2; when the signal levels off, even for

only a few samples, the detection is often interrupted, al-

though seeing the whole time series, it would probably not

be judged so.

5 Conclusion

The intent of our work was to develop a framework of

transient detection methods suitable for the injection mold-

ing process, which deals explicitly with the challenges of

real time prediction, a wide variety of channels with dif-

in some circumstances.

ferent characteristics, a wide variety of different machine

types, and the desire to obtain diagnostic information about

instability reasons.

In this paper we proposed a strategy for making gradi-

ent measures comparable in order to detect transient states

which can be used for online process monitoring. In spite of

the heuristic nature of the outlined approach the results for

the injection moulding process are very promising. These

experimental results should motivate to intensify research

in this direction. Particularly, what remains to be investi-

gated in more depth is a comprehensive analytic and theo-

retic study of the concepts and problems within the frame-

work of stochastic processes.

Appendix

Specifications of the application

As normalization function ιθ1,θ2
: [0,∞) → [0, 1] we

choose a model that fits ιθ1,θ2
(θ1) = 0.5 and ιθ1,θ2

(θ2) = 1
as e.g.

ιθ1,θ2
(x) =











a1x
2; |x| < θ1

a2x
2 + b|x|+ c; θ1 ≤ |x| ≤ θ1 · θ2

1; |x| > θ1 · θ2

.

(23)

For the final assessment whether at time t the process is

in a transient state the normalized gradient measures of all

the channels are aggregated by means of the max-operator,

which is the standard fuzzy logical connective for disjunc-

tion. The choice of the max-operator seems reasonable as

the final assessment honors the most striking indication for

a transient status detected by any of the methods in any of

the channels.

The following table specifies ranges of values for the

model parameters of Section 4.

Parameter Useful Range Values used in Panel

1 2 3

Transients

M 5–100 50 5

q 0.5–0.99 0.5 0.5

cthresh 2.0–8.0 4.0 7.0

MB 50–10000 1000 250

β′

def 0.02 0.02

w 0.1–5.0 1.0 3.0

Sliding Regression

λ 0.5–0.99 0.9 0.9 0.9

s 5.0–20.0 12.0 12.0 15.0

Autoregressive Models

n 2–10 10

s 5.0–50.0 30.0

Some parameters are less important or sensitive; they were



set to cσ = 0.95, cµ = 0.05, sscale = 10 (transient detec-

tion), sscale = 2 (sliding regression, AR models).
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