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Chapter 1

Ubersicht

Die Funktionsweise des menschlichen Gehirns besch#@#tigosophen und Naturwissenschaftler
seit langer Zeit. Es zeigt sich, dafld Aufgaben, die fir dasstidiche Gehirn einfach zu sein
scheinen, wie zum Beispiel die Erkennung von Gesichterm, setar schwer oder gar nicht
von heutigen Maschinen oder Computern erledigt werdemédn Andererseits haben letztere
Fahigkeiten, mit denen das menschliche Gehirn nur weaskrdthlechter zurecht kommt, wie
mathematische Rechnungen oder InformationsspeichekMagn komplexe Vorgange im Gehirn,
z.B. Gesichtererkennung, Sprachverstandnis oder Adtistraund SchlieR3en, besser verstanden
wirden, konnte dies viele neue Moglichkeiten erdfinen

Eine Art, ein solches Verstandnis zu erreichen, ist diestinichung der Informationsverarbeitung
und -speicherung im Gehirn. Neuronale Karten, die die Adttisng verschiedener Teile des Cor-
tex fur unterschiedliche Stimuli oder wahrend der Almsting von Aktionen zeigen, sind fir

diesen Zweck sehr hilfreich. Die Aufzeichnungen von Optinzaging Experimenten, wie sie

auch in dieser Arbeit untersucht werden, konnen dafiweadet werden, solche Karten zu er-
stellen. In solchen Aufzeichnungen werden zum einen Ségaafgezeichnet, die mit der neu-
ronalen Aktivitat verknipft sind; andererseits aberhastbrende Signale, wie Adern, mit dem
Puls zusammenhangende Oszillationen, etc.

Die Ubliche Art, aus diesen Aufzeichnungen die aktigitd#zogenen Komponenten herauszufil-
tern, ist die Benutzung von Bandpalf3filtern, in VerbinduntyVerfahren, die das Signal-Rausch-
Verhaltnis verbessern, z.B. das Aufsummieren mehrerpefixente. Bandpalfifilter sind jedoch
problematisch, da durch ihre Verwendung die Karten songa# werden konnen, dal’ wichtige
Statistiken, z.B. die Anzahl von Singularitaten in Orieningspraferenzkarten, nicht mehr stim-
men.

Ein anderer Ansatz, der in letzter Zeit zur Gewinnung vonrmealen Karten benutzt wird, ist
Blind Source Separation (BSS). Dieser versucht, das &Mistiezogene Signal durch lineares
Entmischen von den anderen Signalen zu trennen. Dabeleggistverschiedene Verfahren, die
Entmischung zu lernen. Das hier naher betrachtete Venfialiler Extended Spatial Decorrelation
(ESD) Ansatz ([MS94, SSM99)), lernt die Entmischungsmatrix nur aus den beobaahietgen,
unter Verwendung derer (verschobener) Korrelationen.

Einige der zur Verfigung stehenden BSS-Verfahren werdd®$M"99] auf ihre Eignung fur
Optical-Imaging Experimente untersucht. Obwohl sie gsatzlich in der Lage sind, Karten
Zu extrahieren, stellt sich ihre Anfalligkeit fur Senddoise (Rauschen, das nach dem Mischen
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auftritt, z.B. Kamerarauschen) als Problem dar. Einer nlelein Artikel getesteten Algorithmen,
die ESD Methode, wird in dieser Diplomarbeit bezuglich Baiuschrobustheit weiterentwickelt
und mit zwei Datensatzen getestet.

Die Weiterentwicklung besteht im Wesentlichen darin,tstater Verschiebung mehrere fur die
Berechnung von Kreuz-Korrelationen heranzuziehen. Demindert den Einfluld von Sensor-
Noise und macht den Algorithmus weniger sensitiv beziiglier Wahl der einzelnen Ver-
schiebung. Als Optimierungsmethode fir die resultieeeedwveiterte Fehlerfunktion wird ein
beschleunigter Gradientenabstieg benutzt. Dieser ist abl@@&ngig von der Initialisierung seiner
Parameter, dafur aber flexibler beziglich der gefunddfr@mischungsmatrizen, verglichen mit
anderen Multi-Shift Algorithmen.

Um die Rauschrobustheit beurteilen zu konnen, wird eimskicher Datensatz benutzt, fir den der
Rauschanteil kontrolliert werden kann. Verglichen werdienlLeistungsfahigkeit von Single- und
Multi-Shift-Algorithmen, das Verhalten fiir Ubliches I8gring (eine Vorverarbeitung der Daten, die
fur einige Algorithmen notig, fur andere hilfreich isthd fur rausch-robustes Sphering, und der
Einflu von raumlich korreliertem Rauschen im Gegensatweifem Rauschen. Das Ergebnis
zeigt eine im Vergleich zu den anderen Algorithmen grofRaiaschrobustheit des hier entwick-
elten Algorithmus’. Simulationen mit dem auch in [SSBB] verwendeten Augendominanz-
Datensatz zeigen fur den neuentwickelten Algorithmudeitiafte Resultate; die extrahierten
Karten haben eine sehr gute Qualitat. Die Trennung des Mgsignals von Artefakten wie
Blutgefalien, globalem Signal, etc. ist deutlich bessebal herkbmmlichen Verfahren.



Chapter 2

Scope of Thesis

The way the human brain works has fascinated philosophets@antists since a long time. It
is hard to imitate tasks, which seem to be easy for the humain,biike visually recognizing
faces, with machines or computers. On the other hand, these dapabilities the brain is not
very powerful in, like doing calculations and storing infaation. It would open up many new
possibilities, if processes like face recognition, largrianderstanding, abstraction and inference
in the human brain were comprehended.

One method applied to reach this comprehension is the asalfyaow information is processed
and represented in different parts of the brain. Maps of ttiwiy of neurons in the cortex, for
different stimuli or during certain actions are performade very useful for this method. The
optical imaging experiments, which are examined in thisig)ehave as a goal the extraction of
such maps. Different signals indicating neural activity mcorded, together with unrelated signals
like blood vessels, biological and recording noise, by éhegeriments.

Conventional optical imaging mostly uses, among other ousho improve the signal to noise
ratio, bandpass filters to extract the activity maps. Theaideandpass filters is problematic,
because the resulting maps and the statistics of theirresafe.g. number of singularities in ori-
entation preference maps) can be influenced by this.

A different approach recently used is the use of Blind SoSeearation (BSS) methods to separate
signal sources containing the mapping signal from thoséagung blood vessel artifacts, noise,
etc. This is achieved by learning a linear demixing matrixhét applied to the observed image
stack, the demixing matrix yields the estimated sourcefei®@nt methods exist for this learning;
one of them, used in this work, is the Extended Spatial Detation (ESD) approach. For this
information about spatially shifted correlations of thextures is used.

There are different BSS techniques available, and [$99] evaluated some of them on an image
stack obtained during an ocular dominance experiment.olpvéous that, although able to extract
activity maps, these algorithms have problems with sensimen One of the algorithms, which
yielded the best results there, the ESD algorithm, is imgadaand applied to two data sets in this
thesis.

The goal was to approximately decorrelate the estimatectesdor several shifts instead of just
one, as the ESD algorithm does. This decreases the influérssngsor noise on the separation
results, and reduces the problem of selecting the right feimitlecorrelation. For the optimization
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of the extended error function an acccelerated gradiented¢ss used. Though this algorithm
is dependent on the initialization of its parameters, it srenflexible in learning the demixing
matrix, when compared to other multi-shift algorithms.

An artificial data set is used to control the sensor noisegnteis the analysed data. Issues anal-
ysed using the artificial data set are a comparison betwegtesiand multi-shift algorithms, the
differences in performance when using noise-robust sphénistead of the standard sphering ap-
proach (sphering is a preprocessing step needed by sonrithaig®) helpful to others), and the
effects of spatially correlated sensor noise instead ofexdensor noise. The results indicate a su-
perior noise robustness of the algorithm developed in t@sis, when compared to other variants
of the ESD algorithm. Evaluation for the second data sets#éme ocular dominance experiment
as in [SSM99], shows, that the newly developed algorithm comparesréoly to the other ESD
variants and is very well able to extract ocular dominancesndhe extracted image maps have
better separation of the mapping signal from other souiigesblood vessel artifacts or global
signal than other algorithms, which are currently used.



Chapter 3

Background

3.1 Optical Imaging of Intrinsic Signals

3.1.1 Overview of Optical Imaging

Optical imaging is a technique used to acquire informatibaua the functional architecture of
the brain. When it is used in imaging of the primary visualterr which is the case for the
data analysed in this work, different visual stimuli aregamated to the eye. These stimuli evoke
neural activity in the primary visual cortex. Changes irtigeflection of the cortical tissue,
which are related to the activity of neurons, are used taaektctivity maps of the cortex from
camera recordings. These maps show which parts of the mappaihs are activated by the
presentation of the stimulus. Examples are ocular domaamaps, indicating which regions of
the visual cortex are excited by the left and which by thetrigye, and iso-orientation maps,
displaying regions excited by edges with a given orientatiSignals underlying the changes in
light reflection, which are used for the creation of such maps changes in light scattering and
amount of deoxygenated hemoglobin.

Bonhoeffer and Grinvald give a very good and concise intctida to optical imaging using in-
trinsic signals in their book chapter [BG96]. In the followi | provide a summary to introduce
the reader to this field.

The existence of intrinsic signals, which can provide infation about the activity of neurons,

is already known for many years. In 1949 Hill and Keynes reggbabout “Opacity changes in

stimulated nerve” [HK49]. In 1986 these signals were regmbitio be used for the creation of
cortical maps of neural activity in [GLF86]. Optical imaging using intrinsic signals currently
provides very high spatial resolution, compared to otheiia imaging techniques available, like

fMRI. Though its temporal resolution is slower than the ookieved with voltage-sensitive dyes,
the combination of still reasonable precision in time andgh hevel of spatial detail opens up

many existing and new fields of application for this techeigén advantage when compared to
voltage sensitive dyes is that the brain, and if less spaggadlution is sufficient also the dura, are
not severed. No extrinsic substances are used which comidgiathe brain or change its function;
only the skull and dura have to be opened.

Three kinds of maps are usually extracted in imaging sessi@ingle condition images show
which regions of the cortex are activated and which are aduring presentation of one certain
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stimulus (e.g. the reaction in the visual cortex to a movingtigg presented to only one eye).
Difference maps, on the other hand, basically take two sighdition images for orthogonal
stimuli* and use their difference or ratio to enhance the signal tsen@itio and eliminate regions
which are active regardless of the stimulus. Several sicmidition images can be combined using
various methods to obtain a map representing multiple $ttimwolor coded map with different
colors for the different edge orientation preferences ofical neurons is an example of this.

Maps created by optical imaging are used for many differpptieations: They are useful in the
investigation of structural elements of the functionalhitecture of the brain; currently mainly
the visual cortex of different animals is analyzed in this/ywalthough other sensory systems are
also investigated. Examples are experiments concernmgisiial pathway ([TRS93]) and infer-
otemporal area (object recognition, [WTT94]). The fed#ipbbf chronic experiments offers the
possibility to analyze postnatal experience-dependeaastiplty and the development of the neo-
cortex over several weeks or months ([KB94, CB94, GB96]fe&if of environmental changes,
e.g. monocular deprivation, can be explored. Using a specis system (a macroscope) with very
high numerical aperture for projection of the reflectiontodhe camera also makes it possible to
focus the camera in different depths of the cortex; this wan to a depth of 0.5 to 1.0 mm into
the surface of the cortex.

For neurosurgery optical imaging could one day offer thespeat to determine the borders of
functional areas in the vicinity of surgical procedurestharlocation of epileptic events. Imaging,
though with much less spatial precision, is possible thinotig intact dura (cats, [FLTG90]) or

even through the thinned skull (rats, [MKDF93]), when usinfgared light. For monkeys record-

ings are usually done from the open brain. Research is diyréone to make optical imaging

through the intact skull of humans possible, as an aid inrdisig and surgery preparation.

The following subsection explains some of the principles signal types underlying optical imag-
ing using intrinsic signals.

3.1.2 Signal Sources

The images recorded by optical imaging from the cortex ofnaté contain very small temporal
and spatial changes in the level of light reflection. Thesagks are below the level a human can
observe. The use of modern cameras (see description ofiggrdal setup in the next section)
with high signal to noise ratios allows to detect them. Theedked change of light reflection is
called the total signal in this thesis.

The total signal can be split into components with differstatistical properties, e.g. time coure-
ses. One of these is the mapping component, which is relatkatal neural activity and has a
fine spatial resolution. Another part of the total signak thobal component, has a coarser spa-
tial resolution and is not suitable for optical imaging. ther components include blood vessel
patterns, vasomotor signal and ongoing activity. Each efctbhmponents has biophysical causes.
In the following the components are explained in more defailowed by a description of the
underlying biophysical components.

The mapping component contains biophysical componenteseshmplitude and spatial pattern
correspond best to local neural activity. Its spatial nesoh is precise enough to be used for

!Orthogonal stimuli are presumed to activate nearly digjpopulations of neurons. Right eye and left eye stimuli
could be assumed to be orthogonal.
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optical imaging. The underlying biophysical components miainly the light scattering and the
deoxyhemoglobin components.

The global component is comprised by signals with less alpasolution. While its main under-
lying components, oxyhemoglobin concentration and bloodl #ind volume changes (e.qg. local
recruitment and dilation of venules), are still stimulukated (more oxygen is transported to re-
gions with high neural activity), their time course and ggdaesolution are coarser than that of the
mapping signal.

Further components are interfering with the mapping coreptinThe ongoing activity, sponta-
neous activation of the cortex ([ASGA96]), and the vasomsignal, which is a slow oscillation

of neural activity in the cortex ((MAZ96]) are examples of signals unrelated to the stimulus pre-
sentation. Larger vessels change their size and refledtiaghbdue to changes in blood flow and
volume, which causes artifacts which can be hard to sepfatethe mapping component.

The biophysical components (blood flow and volume changegsemoglobin, deoxyhemoglobin,
and scattering components) are explained by BonhoeffeGaimald in [BG96] as presented in
the following paragraphs.

One biophysical component is the change in blood volume duectl capillary recruitment or
dilation of venules. As a consequence the absorption of bglhemoglobin increases. This com-
ponent is prevalent at 400 to 630 nm wavelength. At about 57®xy- and deoxyhemoglobin
have the same level of absorption and so, for this waveletiggiblood volume component domi-
nates the total signal. A problem with this component ispiatial specificity. Blood flow changes
normally affect rather large areas, meaning that othendgemoglobin and scattering) compo-
nents are better suited for optical imaging.

Activity-dependent changes in oxygen saturation leveheftiemoglobin are another component
biophysical signal affecting optical imaging. The oxyhaiodin and deoxyhemoglobin compo-
nents are the changes in light reflection which are due togdsin the amount of oxygenated
and deoxygenated blood in an area, respectively. Becaysemoglobin and deoxyhemoglobin
have different absorption spectra, different time coyraesl different spatial characteristics, the
blood flow component has different effects on the total difmavarying wavelengths. The de-
oxyhemoglobin concentration increases during activaitioa region because of the increase in
oxygen consumption of active neurons. Contrary to thisceffte rush of fresh blood into active
regions results in higher levels of oxyhemoglobin. Thesgtredlicting influences have different
time series and whether the oxidation level increases aedses depends on location and time.
The deoxyhemoglobin signal constitutes about 30 to 50 % etdkal signal; it starts about 200
ms after stimulus onset, rises during stimulus presemtatial decays to baseline within 15 to 20
seconds after the end of the stimulus. The oxyhemoglobimakig slower: It is constant or even
reduced during the first 1.5 seconds of stimulus; then isrfee 1 to 3 seconds longer than the
stimulus lasts. It only comprises about 5 % of the total digiidne deoxyhemoglobin signal is
spatially the most precise (least smearing, about/A0Q of all signal types mentioned and part
of the mapping component, while the oxyhemoglobin signapegtially and temporal less precise
and belongs to the global component.

Another biophysical component arises from the light-seaty changes in regions of the cor-
tex which are active. lon and water movements, extracellsgiace dilations and contractions,
swelling of subcellular compartments such as mitochondagillary expansion and neurotrans-
mitter release all have effects on the scattering propediereural tissue and are activity depen-
dent. The scattering component becomes significant abd¥en®Band is dominant in the near
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infrared above 800 nm wavelength. The time course of thisadigs reported to be very well
suited for optical imaging: It is assumed to be wavelengtependent, rises about 200 ms after
stimulus onset and decays back to the baseline within 3 tednsgls after the stimulus stops. Its
amplitude is about 10 % of the total signal. The smearing dubé scattering, which influences
the spatial resolution achievable using this componemistisnated to be below 2Qum.

Bonhoeffer and Grinvald report that the properties of fiomel maps are generally very similar,
regardless of the wavelength used for illuminating therbdairing optical imaging. On the other
hand, the mapping signal constitutes only about 5-10 % oftdked signal at below 590 nm,

whereas it is responsible for about 30-50 % at 605 nm. Thisdbgbly due to oximetry (level

of oxidation of hemoglobin). The spatial resolution achigle by optical imaging using intrinsic
signals is about 100m, limited by smearing and scattering effects of the neisale.

3.1.3 Experimental Setup

This section is intended to give a general overview of theedrpental setup necessary for optical
imaging. It is described in more detail in [BG96]. The actaaperimental setup used for the
optical imaging data, which is analyzed in this work, is digs in chapter 6.

As a first step in optical imaging, generally a cranial windoss to be mounted onto the skull
of the animal. This involves trepanation of the skull of ab600 mn? (for cats) and fixation of
a chamber on the skull, which is filled e.g. with silicon oilgmtect the brain and provide good
optical properties. Generally the dura is removed, too, Bsppecially for long term imaging it is
advantageous to let it in place; good results have already bbtained this way, using infrared
light (cats, [FLTG90]). Even totally non-invasive techaés or a thinning of the skull without a
complete trepanation are used. It works well for rats ([MKI3P; as a tool for diagnosis and
surgery preparation for humans it is under being researdnetthis case spatial resolution is lost
and infrared light has to be used, because its absorptiohébghkull is much smaller for higher
wavelengths.

Devices used for imaging are either CCD cameras or video ieanelow-scan CCD cameras
provide a high signal to noise ratio (well capacity in redatito photon shot noise) and a high
spatial resolution. On the other hand, their temporal tegmi is poor, due to long exposure times
for each frame. Modern video cameras also provide highapasolution. Differential imag-
ing, where a reference frame (e.g. a blank exposure withimubkts applied) can be subtracted
(before digitization) from every frame, can be used to a@higetter quality in digitizing images
when using video cameras; all 8 bits are now available todmtioe differences of pixels for the
two images instead of the absolute value of each pixel. Ftr bemera techniques, binning of
neighboring pixels (spatially and temporal) can be usedmarove the signal to noise ratio. For
very low light levels cooled slow-scan CCD cameras are mppgapriate, while in medium to
high light environments video cameras achieve the bettgrasito noise ratio, because of their
higher frame rates, which allow better temporal averaging.

A special arrangement of lenses, a macroscope, can be ugegdct the images onto the camera.
It is essentially a microscope with very low magnificatiort tsary high numerical aperture and

provides a very shallow depth of field. This allows to focus tamera into different depths of the
cortex (a depth of up to 1 mm is possible). When focused bel@®y.3n the surface vasculature

is blurred sufficiently for optical imaging.
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During the recording of each optical image stack (exceptbfanks) one stimulus is presented.
The stimulus set from which the stimulus is chosen dependee@maps which are to be created.
For ocular dominance maps the stimuli could consist of ggatiof all orientations moving in all
directions; at these the animal looks with one and later thighother eye blocked. For orientation
preference maps a single stimulus can be a number of moviesegith a certain orientation.

3.1.4 Extraction of Maps

Of the components mentioned in the last section only the mgpgomponent, is suitable for

optical imaging. This component has to be separated frormtladlr components to obtain good
maps of cortical activity. A problem is that other compomsefreferred to as “biological noise”

in the following), like the global signal, can also be rethte neural activity and thus can show
similar time courses. Furthermore, the images containosemaise, which is introduced by the
camera; this noise is e.g. photon shot ndisecamera electric noise.

Photon shot noise and camera electric noise have high sfratimency and are different from
frame to frame. The higher the frame rate of the camera, the mlootons per time unit are
necessary to get statistically reliable photon countse{pialues). The changes in reflectance due
to activity, which are to be measured for optical imaging aear 0.1 % of total reflectance. To
achieve a signal to noise ratio (SNR) of e.g. 10, about 1@)Q0® photons have to be counted in
each frame.

Biological noise mostly has low spatial frequency (adjdaqerels are correlated) and temporal
frequency (adjacent frames show similar noise). Signkéstliie vasomotor signal, the ongoing
activity, and changes in blood-flow caused by breathing &agtheat can have an amplitude which
is much larger than that of the mapping component (deperalinthe animal, the experimental
setup, whether the dura was removed, etc.). A synchroaizati respiration of the animal and
the start of recording with its heartbeat is very useful tmimize the noise cause by heartbeat
and breathing: This way all experiments are done in the sdrasgs of heartbeat and respiration.
Physical movements also have to be taken into account. Slcakemove adjacent frames relative
to each other and make a separation of the components ewéer.h&tandard processing tech-
niques for extraction of the activity maps from the recoriedge frames, as presented in [BG96]
are given in the following.

Single condition images are created by normalizing the @nagptained under application of a
single stimulus condition with a blank image. This blank gaas either an image obtained when
no stimulus was applied or a cocktail blank. The cocktaihkla a mixture of all images which
were obtained for the complete set of stimuli. Latter hasdtieantage that regions, which are
always active, and artifacts of blood vessels (which agelain active regions), and the growth of
active region$ are canceled out better. On the other hand, the creation afkiail blank needs
some assumptions about what the complete set of stimuli mayAbcomplete set of stimuli is
expected to uniformly activate the observed cortex regidre normalization can be a subtraction
of the blank (whichever is used) or a division by the blank.

2The number of photons registered by the camera for a givenlégel is a stochastic process. l.e. for a given light
level and recording time per frame the number of photons lwiiaegistered has a certain variance, introducing the
noise. This is the larger the smaller the well capacity (neindf photons per pixel the camera can accumulate before it
overflows) of the camera is.

3Because of smearing effects active regions appear largetttey are in the image, by about 106.
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Difference maps are created by normalizing an image olddimeone stimulus with that of an

orthogonal stimulus. The normalization can be either aragtibn of one from the other, followed

by a division by a blank; or it can be a division of the imagedae stimulus by that of the other.

Both approaches give similar results, because the mapiginglsthe changes in amplitude, is very
small compared to the amplitudes (pixel values) themsd[B$396]). The creation of difference

images requires some assumptions, e.g. about the choicthofonal stimuli. A problem is that

regions, which are active in both single condition imagamoa be distinguished from regions,
which are inactive in both.

A significant help in analyzing the recorded images can beffigne analysis. This procedure
requires that, before presentation of the stimulus, oneaverinames are recorded with no stimulus
present. This frame (or their average, if more than one id)use¢hen subtracted from each of the
following frames. Very slow biological noise can be candeleis way, although noise with high
spatial frequency (photon shot noise) is increased, bedaesoise present in the first frame(s) is
added to all other frames. This problem can be lessenedéfalevames without stimulus can be
averaged for the subtraction.

Usually a bandpass filtering is used to extract the local imgpgignal. The assumptions responsi-
ble for this choice of processing the images are based om#i@kpower spectrum of the images.
Components of high spatial frequency are assumed to be. nidigeis realistic, because the spa-
tial resolution of optical imaging techniques is limitedabout 100um. Due to smearing and
scattering effects features which are closer togetheratamendistinguished. Thus anything finer
than 100um must be noise. Components of low spatial frequency, onttier dand, are assumed
to contain global signal components or other biologicabaolJnder these assumptions, a band of
medium frequency used to filter the images obtained by dptitaging should give a good esti-
mate of neural activity. But the highpass filtering of the gaais questionable, as there is no fixed
frequency separating the local and global signal compariarthe power spectrum. The statistics
of pinwheet distribution (density, number) in maps of orientation prehces can be changed if
highpass filtering is applied to the images ([SO87]). If bandpass filtering is applied to white
noise it is possible to obtain images similar to orientatieference maps ([RS90]). In contrast
to this, reasonable lowpass filtering does not change tliasstiss.

As a consequence of the shortcomings of bandpass filteitreyg t&chniques are evaluated for their
use in optical imaging. The technique used in this thesigmass a linear mixing model of the
biophysical components: The mapping component, the glotrabonent, vasomotor signal, etc.
are assumed to be added to the background image, weightdebibyime course. Blind Source
Separation algorithms, explained in the next section, sed to estimate a demixing matrix, which
then allows to retrieve the components from the recordedurgs.

3.2 Overview of Independent Component Analysis and Blind Sarce
Separation

A problem often used to illustrate the Blind Source Sepana{BSS) problem is the Cocktail

Party problem. Imagine you are a guest at a cocktail partytiagek are several small groups of
people all talking (in not too low voices) at the same timevé&ttheless most people are still able
to understand what their conversation partner is sayingndlated to the BSS framework this is

4Pinwheels are locations with orientation singularitidspeentations are represented in the vicinity.
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interpreted as following: Several sources (the voices efaople talking) are mixed (in the ear)
to give two observed mixtures (the sounds “heard” in botls)ear

The cocktail party problem illuminates several issues efBfind Source Separation task. First
the voices of people are convolved. This can occur for exardpk to echos reflected from the
walls or by the acoustic reception in the ears. Convolutibthe® sources can possibly help in the
separation process by introducing temporal dependenbe signals. On the other hand, to obtain
the original sources, the convolution has to be inverseds fitocess has to be learned in addition
to the unmixing.

Furthermore, due to different paths from the sources toweesensors, the ears, propagation de-
lays are occurring. Depending on the location of a speakeroice can arrive earlier in one ear
than in the other. This makes the mixing, and consequenglydémixing, process more compli-
cated. The demixing cannot be instantaneous, i.e. it caimgy use the values of the mixtures at
one point of time to recover the original sources for thahpof time. Instead it has to remember
past observations to take them into account during demixing

A third point is that people only have two sensors (their eavsilable which they can use for
separation of a potentially unknown number of voices. Fanealr mixture without assumptions
about the underlying source signals at least the same nushbensors as sources is necessary to
separate them all. On the other hand, the attention of pg@plerally focuses on only one source,
the mixtures need not be linear, and the sources are coadolall this could make the separation
process easier.

The mixing process in the ear is potentially nonlinear. Tguses the question of the appropriate
demixing procedure which is the inverse to the mixing. Inkrein the analysis of sounds heard by
the ears seems to be adapted to the mixing process veryfgetiemixing is to be done artificially
some assumptions about the underlying mixture processeassgary.

Finally, the mixing process during a cocktail party is highiynamic. People are walking around
while talking, the listener moves his head, new people aaivd others become quiet. The demix-
ing process has to adapt to all these changes, and the hurianabd ears are obviously very
good in doing that.

Current algorithms developed for the Blind Source Sepamgtroblem normally simplify many
of these issues. First the mixing process usually is assuoled linear. Furthermore, often time
delays in the mixing process are ignored; this can be judtibereal world data if the time delay
of the arrival of the signals at the different sensors istandhan the sampling rate or the temporal
correlation of the signals is broad enough (i.e. the sigtiadsge slowly). In artificial data sets the
mixing normally does not involve time delays, anyway.

Moreover, the number of sources is in general pretended tat Ioeost as high as the number
of sensors. Often both numbers are assumed to be the same liRear mixing process this
allows inversion of the mixing, because for the number osengreater or equal to the number
of sources the mixing matrix has full rank (in general, ifsitiot singular).

Another simplification often assumed is that the sourcemiareonvolved before they are mixed.
If a convolution has to be inversed information about theetgaries of the signals must again be
taken into account, making the demixing more complicated.

Many algorithms were proposed for the task of blind sourpassion. In this thesis the Molgedey
& Schuster algorithm proposed in [MS94], and evaluated fiical imaging in [SSM99] (as the
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ESD, Extended Spatial Correlation, method) is used andesia It is based only on second order
statistics (correlations and shifted correlations) ofda&a. Second order statistics is sufficient for
BSS in the case that auto-correlation of the sources exishdo-zero shifts and that they are

reasonably different between the sources. Further infoomand a mathematical formulation is

given in section 4.

Other algorithms, which are often summarized under thel Ilb& (Independent Component
Analysis) use higher order statistics of the data, staisindependence and probability density
function (pdf.) assumptions of the sources, or non-lingaAPamong others, for blind source sep-
aration. Lee et al. [LGBS99] give a good overview of sevenalelpendent Component Analysis
algorithms.

Two algorithms which minimize mutual information betweestimated sources are described in
[BS95] and [Gir97]. In the first paper Bell and Sejnowski gavkearning rule for a neural network
which maximizes information transfer and thus minimizedumalinformation in the outputs, mak-
ing them independent. In the second paper Girolami usesitregpy maximization (which is the
Kulback-Leibler divergence between the pdf. of the sousterates and the Gaussian distribution
with the same mean and variance) to minimize mutual infolonatf the estimated sources.

A different approach is taken by Oja in [Oja97]. He analysesdonvergence and source separa-
tion abilities of the nonlinear PCA algorithm. This is a nfightion of the network he developed
for Principal Component Analysis ([Oja92]) to include niaelar instead of linear neurons.

In [HO97] Hyvarinen et al. present a fast fixed point algortwhich optimizes the kurtosis (in
statistics the diagonal of the fourth-order cumulant tereaa probability density, see [Nik93])
in order to extract non-Gaussian independent components tihe observed data. The kurtosis
measures, how “peaked” and “long-tailed” a probabilitytritisition is. Gaussians have kurtosis 0;
the sharper the peak of a pdf and the longer its tails are,ig¢iehits kurtosis is; flat distributions
have negative kurtosis. If, after sphering the observat{transforming the mean to zero and the
variance to one), a rotation is found which maximizes or minés the kurtosis in direction of all
the axes, a complete separation is found.

The work in [SSM 99] indicates that the M & Schuster algorithm (referred t&aended Spatial
Decorrelation, ESD) is most appropriate for optical imagitata, when compared with the ICA
algorithms given in [BS95, Ama96] and [HO97]. The spatiatcacorrelation structure of this
data is suited very well for blind source separation usirgyE$D algorithm. The data and its
auto-correlation structure is presented in detail in secl. Nothing special needs to be assumed
about the probability density functions of the underlyimyixes (e.g. they do not need to have
super- or sub-Gaussian distributions), which would be s&ary to use other ICA algorithms.

A problem for all BSS algorithms is sensor noise, which cafigomodeled as a separate source,
but is added after the mixing process. The experiments iM[S3)] indicate that the M & S
algorithm is the best of the evaluated algorithms in copiiith woise. The development of a noise
robust algorithm for BSS was one of the main goals of thisighélse idea is that by using more
information of the cross-correlation structure of the migs than the M & S algorithm does, it
is possible to use the gained redundancy for canceling patteosensor noise. The proposed
algorithm is described in section 4.4.



Chapter 4

Algorithms

This chapter presents and explains some second ordetisthtepproaches to the problem of
Blind Source Separation. In section 4.1, after a short thtetion to the used notation, the frame-
work of Blind Source Separation, its assumptions and somaxants concerning Blind Source
Separation on optical imaging data are introduced. Thedigstrithm presented is the Extended
Spatial Decorrelation algorithm published in [MS94, SS88] (section 4.2). It is the basis for

the two other algorithms evaluated in this thesis. The Jadabhod is explained in section 4.3,

followed by an accelerated gradient descent algorithmldped in this work (in section 4.4).

4.1 Blind Source Separation Problem

4.1.1 Mathematical Notation

In the following a short overview of often used notation is\aded.

Vectors and matrices are printed in bold face, scalars litsta A hat* denotes an estimated
quantity, e.g. estimated sources. Angle bracketsexpress the average with respect to the given
sample index. r is a vector specifying a pixel in images, whiter is the distance vector between
two pixels (difference of their respective vectorsr) denotes a vector of sources at a locatton
similarly y(r) is a vector of mixtures, ang! (r) represent sphered mixture8(*) (Ar) is a cross-
correlation matrix of the sources for the given siiift, andC(Ar) stands for the cross-correlation
matrices of the mixturesA andW denote the mixing and demixing matrices, respectively.sbloi
is expressed using the variable

The cross-correlation matrices of sour€$) (Ar) and of the mixture€<(Ar), for a certain shift
Ar are defined as following:

c¥(Ar) = <s(r)sT(r+Ar)>r (4.1)

C(Ar) = <y'(r)y'T(r—|—Ar)>r 4.2)

16
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The diagonal entries in these matrices are the auto—ctju'red;aCi(j)(Ar) is the auto-correlation
of source; for shift Ar. The off-diagonal elements are the cross-correlationsdmt the sources
or mixtures.

4.1.2 Blind Source Separation and Assumptions
The model

In the Blind Source Separation (BSS) framework the obsedatd is modeled as a set of obser-
vation vectors{y }, which are a linear mixture of unobserved source vectsfsusing the mixing
matrix A.. If sensor noise is included in the model, it is added after the mixture. Irs thiesis
spatial BSS is used, so the sample index for each source atidrenis the vector, denoting a
pixel in a source prototype or mixture image:

y(r) = As(r) +n (4.3)

The goal of BSS algorithms is to find a demixing mafi, which gives source estimatégr),
which are optimally decorrelated:

5(r) = Wy(r) (4.4)

Assumptions

First, the mixing process usually is modeled to be lineam{ioear mixtures would need further
assumptions about the underlying mixing model. Such eidrasare hard to derive for opti-
cal imaging data (see [S0O99]), which is the actual targetiejon of the algorithm developed
here. Furthermore, more parameters are normally necefsangn-linear models, making their
estimation harder.

In this thesis BSS is performed using spatial shifts. Thesg@assumption concerns the conditions
the data must conform to in order for this method to work. Qrtbat sources have non-zero auto-
correlation functionsj‘i(’?(Ar), which differ among the sources for the shiftAr} used by the
algorithm @ is the number of data points, over which the sample indexs):

C(Ar) = (si(x)si(r + Ar)), = % S si(r)si(r + Ar) (4.5)

At the same time, to make successful separation possildesatlrces must have vanishing cross-
correlation functions:

Ci(,sj)(Ar) = (si(r)sj(r + Ar)) =0 ;Vj#i,VAr (4.6)

The former condition, non-vanishing auto-correlationgamthat images are smooth: Neighbor-
ing pixels are not independently drawn from a probabilitpsi. Data, whose auto-correlation
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vanishes for all non-zero shifts, is better processed withesICA methods, which make other
assumptions about the sources (see overview of ICA algositin section 3.2).

A third assumption is that the number of observed mixtures, the dimension of eagh, must
be the same as the number of estimated sources, i.e. thesianeri eacts (at least for the BSS
algorithms used in this work). If the number of real sourcekess, some estimated sources will
contain mainly noise. If it is larger, the algorithms canseparate all sources.

Issues concerning BSS on Optical Imaging Data

For BSS algorithms it is generally assumed that the souresimdependent. Spatial second order
BSS uses the fact that the sources should, for all spatitis shé uncorrelated, if they are statisti-
cally independent. In fact it is sufficient, if the sources ancorrelated for those shifts which are
used by the algorithm. The family of Primary Component As&yPCA) algorithms ([Oja92])

is only based on the assumption that cross-correlationthézero-shift should vanish. That only
constrains the space of solutions enough to recover sowta®d by an arbitrary angle. The
correct sources can only be found, if the correspondingnmgirnatrix is symmetrical. BSS algo-
rithms make further assumptions. One possibility is, astimeed, that the sources are assumed
to be uncorrelated with versions of other sources which laifeed by a certain amount in space
(for spatial BSS).

The auto-correlation of sources must be non-zero, at leasié considered shifts, for this assump-
tion to be useful (see figure 5.2 for an example of auto- angsecorrelations). The assumption
of non-vanishing auto-correlations are very appropriatdtfe extraction of mapping signals from
optical imaging recordings, because the neural activitickvlunderlies them usually affects re-
gions which span several pixels in the recorded images. , Traighboring pixels are correlated.
The question of vanishing cross-correlations betweendhecss is less clear. The mapping signal
should be uncorrelated with artifacts like blood vessels. tii2 other hand, it is not impossible
that other sources, e.g. the global signal, could have airndrrelation structures. Nevertheless,
simulations performed in [SSW¥P9] and during this work showed that the approach is very well
suited for optical imaging.

In real world applications contamination of the data by adiss to be considered. This thesis
will deal with two types of noise. The first type of noise areirses in which the experimenter
is not interested. This type consequently is not treatedialbe but modeled as sources, and
BSS algorithms can separate them automatically. The setypedof noise, here called sensor
noise, is often not considered for BSS algorithms and a senwoblem for many of them. In
optical imaging this can be e.g. photon shot noise or camlectrie noise. It is added after
the mixing process and cannot be modeled as an own sourcboul§h the Extended Spatial
Decorrelation algorithm, as presented in [S83@], performs better than other BSS approaches,
it was an objective of this work to improve its noise robusgie

In the noiseless case (concerning sensor naise,0) the correct demixing matrix would be the
inverse of the mixing matrix. In the noisy cad®, has additionally to compensate for the added
noise; the optimal demixing matrix decorrelates the egtchaources, and is not necessarily the
inverse of the mixing matrix any more. Furthermore, it igmin the noiseless case, only possible
to estimate a scaled and permuted version of the inversg BS®S algorithms.

For BSS, as it applies to optical imaging, two different agmhes are possible, temporal and
spatial BSS. In temporal BSS the elements of each sourcesangiion vector is a time series,
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for one source or one pixel, respectively. Correspondjniglpatial BSS, which is used in the
analyses in this thesis, every observation vector is anémagile the sources are spatial prototype
patterns.y;(r) is the value of pixek in theith observed image frame;(r) respectively denotes
the value of pixet for sourcei. The observed mixture for timeresults from the summation of the
prototype patterns, weighted by the value of their respediine series at timé The underlying
assumptions for the choice of spatial or temporal BSS fallow

The smoothness of the sources is one criterion for the cho@t@een spatial and temporal BSS.
The more the auto-correlation structures of the sourcéerdiie better the separation performance
one can expect. For image stacks the interpretation iseltthrelation structure of neighboring
pixels is more prevalent than the correlation structuréneftime series of the pixels, spatial BSS
will be more promising.

Another factor of influence, especially for mixtures conigaed by high levels of sensor noise,
is the number of samples for each mixture. Assuming a low reurabframes with many pixels in
each frame, as is the case for the data sets in sections 5 #ralrymber of observation vectors
is higher if spatial BSS is chosen. The time series of eachl jgxan observation vector, instead
of the frames at different points in time (as for temporal B3Bthe data is very noisy, it is of
much help to have many samples for each mixture, as it bdttevsato cancel out the noise by
averaging.

A third topic to consider for the choice between spatial ardgoral BSS is, especially for large
data sets, the memory requirement of BSS algorithms. Foddlee sets used in this thesis, with
many pixels in few frames, this also favors spatial BSS: Théng and demixing matrices, as well
as mixture and estimated source vectors, have smaller diorality. The number of samples,
which is higher for spatial BSS, is less important, becansg/araging takes place over all samples
during calculation of the cross-correlation matrices @egerithms in the following sections).

4.2 Spatial Molgedey & Schuster Algorithm

This algorithm is the basis of the other two algorithms eix@d later. It was published in [MS94].
There the authors used temporal correlations for the sémayran [SSMT99] the algorithm was

used to perform spatial Blind Source Separation and waseabf optical imaging data. The
spatial version of the algorithm, which is used in this waskcalled ESD (Extended Spatial
Decorrelation). In the rest of this work | use this term toereo the idea of using information
about correlations for different shifts for separation.

4.2.1 Motivation and Characterization

This algorithm uses, besides the zero-shift cross-caiwe®C(0), one shifted cross-correlation
matrix C(Ar) for computing the demixing matrix. Thus it is called a singhgft algorithm here,
in contrast to the multi-shift algorithms, which are prasenin the following sections. Because
it does not not only use the zero shift for decorrelation, @& RPrinciple Component Analysis)
does, it is called th&xtendedSpatial Decorrelation algorithm.

An advantage of this algorithm is that exact solutions fdimested sources and the demixing
matrix can be obtained explicitly, by solving an Eigenpesbl There is no need to solve an
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optimization problem iteratively. Thus it is very fast, eftthe correlation matrices have been
calculated. Latter is necessary for all presented algusttso it is not taken into account for the
comparison of algorithms.

4.2.2 Description

Similar to all algorithms presented in this thesis, the E&iprithm optimizes a cost function,
which diagonalizes correlation matrices of the estimatadaces; in this case only for the zero-
and one other shifi\r:

BW) = Z((WC(O)WT).,>2+<(WC(A1~)WT)”>2 @4.7)

1,7 2,7

— Z (3:(r)3;(r))2 + (3i(r)3;(r + Ar))?

For the calculation of the cross-correlation matrices #ita @ first sphered. The standard sphering
procedure is

y'(r) = Dy(r) ,Where (4.8)
4.9)

Herey’ is the sphered datd) is the sphering matrix, which transforms the data to havianee
1 along all axes. Before applying this step the data must iieedhio have zero mean. Then the
cross-correlation matrices for the two shifts have to bemaed:

Cij(0) = (Yir)yj(r)) =1 (4.10)
Cig(Ar) = (yi(r)yj(r+Ar)) (4.12)

The former cross-correlation matrix is the identity matvere, because of the previously applied
sphering. In [MS94] Molgedey and Schuster only require thérces to have zero mean; other
algorithms need the data to be sphered, or are more stabdeidhrpreprocessing, so | generally
apply it to the data.

Now the Eigenvalue problem

C(0)C~'(Ar)A = AA(0)A™'(Ar) (4.12)

can be solved for the estimated mixing matAx This step is further commented in appendix
A.1. A(0) andA(Ar) are diagonal matrices with the Eigenvaluas: ! then diagonalizes as well
C(0) asC(Ar) and can be used to recover the unknown sources:
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§(r) = A y/(r) (4.13)

One drawback of this algorithm is the question of how to clkdbe single shift which is used by
this algorithm. Molgedey and Schuster do not give a guid#hisrchoice. In simulations presented
later we used a variant of the M & S algorithm, which speciffés thoice; the definition is given

in section 4.2.3.

4.2.3 Variations
Heuristical choice of shift

On open question for the ESD algorithm is how to choose thararnp shift. Molgedey and
Schuster only require it to be chosen such that

Ci,i(0)C; i (Ar) # Cii(Ar)C;;(0) Vi j (4.14)

My experience is that, at least in presence of sensor ndise;Hoice of shift can have a crucial
influence on the separation performance.

The heuristic presented here has the goal to maximize thaldig noise ratio for the components
of the cross-correlation matrix used. From a set of posshlés the one with the largest off-
diagonal entries in the corresponding cross-correlatiatrimis used, in the hope that the noise
level is the same in all correlation matrices:

norm(C(Ar) — diag(C(Ar)))
norm(diag(C(Ar)))

Arcor = argmaxa (4.15)

The norm used here calculates the largest singular valus afgument (the MrLAB function
nor n), and diag-) sets all off-diagonal elements of its argument matrix tmzdarhe numerator
calculates the norm of the off-diagonal elements of theetation matrix, which is then normal-
ized by the norm of the diagonal elements. Now the questidrows to choose the set of shifts
{Ar} which are examined. In general, not all possible shifts eaexamined; for large data sets,
the computation of all cross-correlation matrices wouketé&oo) much time. An observation
made by us is that the value of the heuristic is more or les®#naver the shifts, for the data sets
evaluated in this thesis. So it seems reasonable to spréadme shifts among the set of possible
ones. Sections 5 and 6 present a possible choice and resutein.

This version of BSS is calledor in the simulation results sections of this thesis.

Optimal Shift

For the artificial data in section 5 a comparison of the egtihgources with the real sources is
possible, because the latter are known. The best separatiol possible using only a single shift
can be determined in this case by performing a BSS for eadilpeshift. The function used to
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determine the quality of the separation, i.e. the functiomparing real and estimated sources, is
the following:

RE(W)

offdiag (Z é(r)sT(r)> , with (seeF1 in [KO99]) (4.16)

r

1 1

| S U S o (<7
offdiag(C) = N4N-1 (zj:makuCi,H !

In computation of the reconstruction Err@RE) first the correlations between estimated and real
sources are calculated. In case of a successful separdtithre (separation was unsuccessful
thenlnf is returned as reconstruction error) the resulting matiougd be close to a permutation
matrix. Then the size of the non-permutation elements sfrifatrix compared to the permutation
elements is computed. The smaller this ratio is, the bdteeséparation performance. For a perfect
demixing theRE is 0, if the original sources are uncorrelated. OtherwiseREecan be lower for
the estimated sources than for the original ones (see sipaexample in results section, figure
5.3). A separation is counted to be unsuccessful, if theetation matrix of estimated and real
sources is not approximately a permutation matrix; thiwiésdase if, after normalizing the rows
of the matrix so that their largest element is 1, any columninber of “1"s is zero.

Simulation runs computing the optimal single shift and meitug its results (demixing matrix,
estimated sources) are denotedopy in the toy data section 5.

Average Shift

The previous two algorithmscér and opt) allow a comparison of the heuristical shift with the
optimal single one. Theean algorithm is intended to provide an estimate of the qualitara
domly selected shift could be expected to give. For each stsibpt does, the reconstruction error
is computed. Instead of taking the minimum of all succesefsllts they are summed up and
divided by the number of successful shifts, giving an avenagonstruction error of successful
separation runs.

4.3 Jacobi Method

4.3.1 Motivation and Characterization

In the literature a procedure is known for the approximateutianeous diagonalization of several
matrices. [BGBM93] presents the idea. Several elementatgtions, Jacobi rotations, are used
to build a rotation matrix which approximately diagonatizéhe system. [CS96] gives explicit
formulas for calculating the elementary rotations, and 8 gives results for an application of
this idea to Blind Source Separation. The Jacobi methodnassuhat only a rotation matrix is
necessary for the approximate diagonalization. The adgenof this assumption is that a fast
method for computation of the elementary rotations is até. The assumption is realistic in the
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noiseless case. Then the data can be perfectly spherednnd mtation needs to be done to
align the independent components with the axes.

The possibility to simultaneously diagonalize severalrives allows the use of multiple shifts

for BSS problems. This has the advantage that there is haxdepee on the quality of a single

shift. By the approximate diagonalization the influence a@fa is minimized. Furthermore, the
selection of a single shift is no longer a problem, insteadllection of several shifts can be used,
which are less critical to select. A discussion of the shifikected follows in the chapters about
the data sets.

4.3.2 Description

The sphering (calculation gf’) and computation of the cross-correlation matri€®\r) has
to be done as for theor algorithm in section 4.2. But for this algorithm the crossrelation
matrices have to be computed for a set of sHif\a}, not only for two shifts:

D = (yo)y' () (4.17)
y'(r) = Dy(r)
Cig(Ar) = (y(r)yj(r+Ar))

The data has to be shifted to have zero mean before applyasg gieps.

In my experience the choice of the set of shifts is not vengiafy it is not always possible to
include all possible shifts in this set, because of compraime. To include only the zero and
one other shift, on the other hand, makes the choice venjtisenss the results for the M & S
algorithm in section 5 show. For a pattern in which severidisshre spread out among the possible
shifts, generally good results were obtained. The exadteHor the set of shifts used in this thesis
is explained for the data sets in the next two chapters.

The cost function minimized by the Jacobi algorithm is theeaas for thadpa algorithm pre-
sented in the next section; but here the demixing mawixs restricted to be orthogonal:

BE(W) = ZZ((WC(Ar)WT)m)Q

For the approximate simultaneous diagonalization of @{é\r) elementary rotation matrices
R(4,7,¢c,s) are computed for all # j, to optimize the cost function along all rotation axes.
The matriceR (i, 7, ¢, s) are the are equal to the identity matlixexcept for the entries

Rm’ Riﬂ' . C S . 2 2
( Rj; Rj; > = ( s ¢ ) swithe” + s =1 (4.18)
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R(i, 7, ¢, s) represents a rotation around thg plane, where: ands are the sine and cosine, re-
spectively, of the rotation angle.ands are computed to minimize the cost function (see [CS96]):

Tx+r

c = (4.19)
2r
_ Y
5T 2r(z + 1) (4.20)

N v

Here[z,y]" is any eigenvector associated to the largest eigenvalue of

G = ) h(C(Ar))h"(C(Ar)) ,with (4.21)
{ar}
h(C) = [Cii—Cy;,Ci+Cjl”

After one elementary rotation is calculated, it is appliedte data set and the next elementary
rotation is computed. After one iteration through all elatagy rotations fori # 5 the diago-
nalization generally is still improvable; thus all elememyt rotations are computed again, until
the change in the value of the cost function is below a thidsHbusually takes 1 to 2 iterations
through all elementary rotations to be close to the optimndhabout 3 to 10 iterations to converge
for the data sets used in this thesis.

The algorithm presented in this section is denotedblo@ in the following.

4.3.3 Alternative Sphering

The Jacobi algorithm is very sensitive to the sphering megssing, as it can only find rotational
demixing matrices after the sphering is done. For data wisidontaminated with sensor noise
this requires careful analysis of the noise and then thecehafian appropriate sphering method.

Besides the standard sphering method presented farathand jacO algorithms, [MPZ99] de-
scribe a modified sphering technique, which improves tlgerithm greatly: The use of a shifted
cross-correlation matrix for sphering is proposed. Thiprapch should cancel out noise, as
long as the spatial correlation of the noise is less thantfifie Ar used in calculating the cross-
correlation matrix. In the interest of a good separatiomltedle shift should, on the other hand,
be in the range where the real sources still show reasonatdecarrelation.

Instead of the sphering matrl in equation 4.17 this sphering method uses an estimate oééthe
sphering matriXD, computed by:

Dy = (yy (x+an) " (4.22)

r

= (A <s(r)sT(r + Ar)>r AT ¢ <n(r)nT(r + Ar)>r)71/2
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(A(s()s"(r + Ar)) A7)
(A <s(r)sT(r)>]r AT)

%

—-1/2

%

The first approximation assumes that noise has no autolatiore and thus the expectation of
the scalar product is zero. The second approximation usesntivothness of the sources; if the
auto-correlation of the sources is very strong, at leasvéoy small shifts, this approximation is
reasonableDy is not necessarily positive definite any more. But neveesethe success of this
approach is shown during the evaluation of the algorithmshie artificial data set in section 5.2.

Thedpa0 algorithm combined with this noise-robust sphering metisatenoted bydpa*, where
the star is the length (number of pixels) of the shift whiclised for sphering. This is relevant in
section 5.2.4, where different sphering shifts are evatliat

Depending on the size of the shift used in calculation, taisant of the algorithm is calleghc*,
where the star is the length of the shift (in pixels).

4.4 Optimization by Gradient Descent

4.4.1 Motivation and Characterization

In the beginning the goal for this thesis was to develop a moise robust version of the ESD
algorithm, because analysis and experience wittctireand also with thgacO algorithm, indi-
cated that these had problems in dealing with sensor noiseeTideas are used to achieve this
goal. The advantage this algorithm has compared to the M &g8rithm is the use of cross-
correlation matrices for several shifts, in contrast toydmlo used by the M & S algorithm. This
provides more information about the auto-correlation fioms of the mixtures, because they are
evaluated at many, instead of two, shift vectors. The dergixnatrix W is over-determined by
the diagonalization equations

WC(Ar)WT = A(Ar)  ,VAr (4.23)

(the A(Ar) are diagonal matrices). An approximate simultaneous dialgzation makes it possi-
ble to cancel out noise through the use of redundancy in teedstermined system. Furthermore,
the algorithm does not rely on the quality of a single shie(separation ability of the M & S al-
gorithm depends critically on it). Instead it computes aisoh which decorrelates the sources for
all used shifts as good as possible. Section 5.2 shows tH&plawshift algorithms can be better
than the best single shift.

The second idea is to use a modified sphering techniquedret.3), which is relatively robust
against noise. It is published in [MPZ99]. This should notitmportant for the basic M & S
algorithm, because it finds the optimum for the cost functiegardless of whether the mixtures
are whitened or not. But both the Jacobi algorithm and théigré descent method gain very much
from the use of the modified sphering technique. The Jacothiadecan only find rotation matrices
and thus depends on a good sphering, while the optimizatioceps used here for simultaneous
diagonalization by the accelerated gradient descent besomore stable using this technique.
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Third, the gradient descent algorithm does not restrictdégmaixing matrix in the same way the
Jacobi method does, i.e. to be orthogonal. A non-orthog®¥ahllows better separation even
in cases when the sphering does not work perfectly. This eaimportant in cases where the
statistics of the noise are unknown and an appropriate sghtrchnique cannot be chosen.

The use of multiple shifts for the calculation of a suitabésrixing matrix has another advantage,
as mentioned in the section about the Jacobi algorithm:s#des the problem of the choice of
shift(s).

4.4.2 Description

The first step for this algorithm is again sphering. In thebspould not be necessary to sphere the
data, as this algorithm is not restricted to find only rotatioatrices as solutions for the demixing
matrix (unlike the Jacobi algorithm). But experience shtlved stability of convergence improves
much if sphering is done as a preprocessing step; otherhisalgorithm often does not find a
good separation, at least for the optical imaging data. Tdredsrd sphering procedure is given in
section 4.3, it remains the same for this algorithm.

Next, the cross-correlations of the (sphered) mixtyrefor a preselected set of shiffa\r} have
to be computed (the same remarks as forjdiwealgorithms apply concerning the choice of shifts

{Ar}):

Cij(Ar) = (yi()y)(r + Ar)) (4.24)

Now an iterative minimization of the cost function, givemneady in section 4.3 is done:

E(W) = ZZ((WC(Ar)WT)M)2 (4.25)

Ar i#j

This minimization (for paramete®) is performed by gradient descent. This ad&Mgo mini-
mize the cross-correlations of the estimated sources, fpaimate simultaneously diagonalizing
all selected cross-correlation matrices. The derivatigethe cost function, used for the gradient
descent in the beginning, are given in appendix A.2. In pradt proved later to be faster and suf-
ficiently accurate to compute the derivative numericallytte forward difference formula. This
was done for all simulations presented in later sections.

The minimization must have a constraint to prevent the demiratrix from converging to the
zero matrix! This gradient descent procedure uses the restrictioiV db

(W, =1  ,i=1,...,N (4.26)

following the example in [MS94]. Molgedey and Schuster caneptheir algorithm with a recur-
rent neural network implementation. This network considta single layer of linear neurons,

1That would be a minimum of the cost function, because thewf&llliagonal elements in the cross-correlation
matrices for the estimated sources would be zero.
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which have inhibitory connections among themselvEss the matrix of these connections. The
neurons have no self-feedback (or -inhibition), and so th&imT has zeros in its main diagonal.
If the signals have a slow rate of change (compared to theanktslynamics), the architecture can
be transformed into a feedforward network, whose input tisigre given by

W=(I+T) " (4.27)

The constraint in equation 4.26 results from the fact thaurons have no self feedback, i.e. the
inverse of W always has ones in its main diagonal. Although this conoadib recurrent neural
networks is unimportant for this work, the constraint issa@able and gives good results.

4.4.3 Acceleration by Conjugate Gradient Method

To improve and speed up convergence of the gradient desdemiimbined with an acceleration
technique. The conjugate gradient method describetNimerical Recipes in C'[PFTV88]
provided good results. In iteratianit calculates the Polak-Ribiere Conjugate Gradient divact
d’ and uses its normalized versighas minimization direction:

g™l = d'fl/dit (4.28)
d'! = VE(W!) +p"td" where (4.29)
gt — (VE(W') - VE(W' 1)) VE(W')

(VE(W1))?

VE(W) is the gradient of the cost function at locati®¥. In iteration# the minimum of the
cost function is searched in directigi. Instead of using the line-search algorithm described
in [PFTV88] we use a dynamic stepwidth adaptation algorittescribed in the next section to
approximately find the minimum in the given direction.

The initialization for the parameters 8 = 0 andd® = 0.

4.4.4 Dynamic Stepwidth Adaptation

The combination of the Polak-Ribiere rule with Stable DyiaRarameter Adaptation was pub-
lished in [RUQ96]. It uses information about the cost fiotiat a few points to estimate a good
stepwidthn?® for the current descent direction in iterationThis is done by either multiplying or
dividing the previous stepwidth’~! by a certain factor, depending on which yields a smaller
cost function value( is a constant> 1 which can be arbitrarily chosen. The simulations presented
later used. = 2.0. If the cost for the current parameter 38t is less than the one for the larger
stepwidth, a special rule is applied. This decreases the\aflthe cost function in places where
the cost function surface is nearly quadratic, i.e. close@nimum.

Using the definition
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e(n) = B(W' —ng'1) (4.30)

we can give the rule determining the used stepwidths:

n sife(0) <e(n'()

't = ¢ /¢ sife(nt/() < e(n'() < e(0) ,where (4.31)
n'¢  ;otherwise
V= n'¢/2
- e(nt¢)—e(0
o

Using this stepwidth the update of the parameter set is:

Wt+1 — Wt o nt+1gt+1 (432)

The algorithm which combines minimization of the cost fumetby conjugate gradient descent
with dynamic parameter adaptation is denotedipgO in this thesis.

4.4.5 Alternative Sphering

Sphering can be very unreliable if sensor noise is preseheinbservations. To improve stability
of dpa0 by more noise robust sphering, the same approach as inrs&c8a3 is used. Instead
of the correlation matrix for the zero-shift it uses a shifteoss-correlation matrix for sphering,
because these are less noisy. For data with broad autdatmmnefunctions this method should
give a good estimation of the correlation matrix of the realaisy mixtures. ThelpaO algorithm
combined with this noise-robust sphering method is denbtedpa*, where the star stands for
the length (number of pixels) of the shift-vector which igddor sphering. l.e. with a sphering
shift of Ar = (1,0) this would bedpal. This is relevant in section 5.2.4, where different sptgerin
shifts are evaluated for spatially correlated noise.

4.5 Simulation Times

All simulations were done on Sun Ultra5/10/30 Workstatiohable 4.1 gives approximate times
needed for different steps of the algorithms, for both datagxamined in this work. The toy data
set has three mixtures, the optical imaging data set has;sbath contain images with 256
256 pixels. The calculation of the cross-correlation neasifor the shifts in the star-pattern-set
is necessary for all algorithmegdr, jac*, anddpa*). For the computation of the optimabt)
and mean shiftriean) all cross-correlations in the examinéd x 61 square were calculated,
which took much more time. Without the time needed to compuéss-correlations, theor
algorithm is by far the fastest, followed kgc*. dpa* consumes most processor time, because
of the iterative optimization. But, except for the calcigat of the optimal shift (which is not
applicable in practice, when the sources are unknown, ay)yvedl algorithms are suitable for
interactive work. Further comments on the computationat o the Jacobi algorithm can be
found in [ZM98].
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Algorithm Toy Data Set Ol Data Set
Cross-correlations fawpt algorithm (3721 shifts) 850 sec. —
Cross-correlations for other algorithms (49 shifts) 13sec 47 sec.
cor 0.02 sec. 0.04 sec.
jac 0.5 sec. 3.6 sec.
dpa 12 sec. 15-49 sec.

Table 4.1: Approximate simulation times on a SunU10 neededifferent algorithms for the
artificial and optical imaging (Ol) data sets presented iaptlrs 5 and 6. The cross-correlations
for 3721 shifts are not computed for the Ol data set, becéuesegtimal shift cannot be determined
(the original sources are unknown). The time for tma algorithm is variable, because for the
difference stack it often reaches its termination condifiine value of the cost function, equation
4.25, is less tham.005) before the number of maximal iterations allowed beforggitag the
algorithm. Latter is set to 100.



Chapter 5

Results on Toy Data Set

This thesis emerged from other projects concerned withgssing of optical images. Among
others the ESD algorithm was evaluated in these projectbedame clear that sensor noise in
the data could be a serious problem. Consequently, one §itlaisahesis was to find a way to
make the ESD algorithm more robust against sensor noise.ake rkmnalysis of noise robustness
possible, an environment where sensor noise could be dledtteas created; the artificial data set
used for the analysis is presented in section 5.1. Resulthdadifferent algorithms explained in
chapter 4 are given in section 5.2. The performance on tiginafioptical imaging data is shown
in chapter 6.

5.1 Data Set

The Molgedey-Schuster (ESD) algorithm for BSS and its vasiaequire the sources to be uncor-
related; shifted as well as unshifted cross-correlaticmse o be (close to) zero for a successful
separation of the mixtures. Furthermore, the sources labe smooth, i.e. they have to have
non-vanishing auto-correlation, at least for some shiftslata set designed to conform to these
requirements, containing three sources, is shown in figurelbis the same data set which was
used in [SSM99] for the evaluation of noise robustness. The sourcesaardvto-dimensional
sine-patterns, which are kind of similar to the patchy strreeof orientation preference maps; the
third source is intended to imitate biological noise, ehg. gradient of oxygenation. All sources
are normalized to a variance of 1. Below, in figure 5.2, a gliceugh the cross-correlation func-
tions for the sources, for different horizontal shifts, i®wn. The auto-correlation functions are
smooth (graphs in the diagonal), while the cross-cortatiare nearly vanishing.

Mixtures are created from the sources by applying a randgaherated x 3 mixing matrix,
using Gaussian random numbers with variance 1. The pixeleseg of the sources is multiplied
by the mixing matrix to yield the pixel sequence of the migwirThis is done for every pixel. The
mixing matrices used in this thesis usually had conditiombers betweef and10.

Generally, white Gaussian noise with a given noise levah@rd deviation of noise) was added
to the mixtures. For the simulations with correlated noigiite noise is spatially blurred using a
Gaussian of radius 1, scaled to the given noise level, anskgulently added to the mixtures. The

The sequence of the values of the same pixel in all three image

30
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Source 1 Source 2 Source 3

Figure 5.1: The set of three patterns for approximately tnetated sources. Mixtures of these
were used in analyses of noise robustness of BSS algorithms.
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Figure 5.2: Correlations of the sources in figure 5.1. Audg@ations are shown in the diagonal
(from top left to bottom right for sources 1, 2, and 3), whileit cross-correlations are given above
that diagonal. Only shifts along the X-axis of the imagessti@wvn.

noise level (standard deviation) is converted to the Sigmaloise Ratio (SNR), measured in dB,
for the plots. First the standard deviation of each mixtsrealculated; their maximumy,i4iS
used in following formula:
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2
g
SNR= 101log,, —Jata (5.1)

noise

For noise levels with standard deviations betweamd3.0 this resulted in SNRs betwe&f and
—5 dB, also depending on the mixing matrix. The higher the dBieaf the SNR, the less noise
is present in the data. For a SNR of 0 the largest signal (m&xtithout noise) and the noise have
about the same amplitude (i.e. variance).

The separation performance is measured by the Reconstrigtior RE), given in equation 4.16.

If S, 8(r)s” (r) is not approximately a permutation matfixhe separation is counted as a failure
(Inf (Infinity) is returned). Otherwise it is a success and Rie is the normalized sum of the
absolute values of the non-permutation elements of thielkation matrix.

5.2 Results

The following sections present simulation results for thedata set. First an example for sepa-
rations of the toy data set is shown to give an impressionefjtiality of separation achieved by
different algorithms. Furthermore, the ReconstructioroEfor all of the sources, mixtures, and
estimated sources is provided, which helps to interpreplbies in later sections. A discussion of
the shifts used for the simulations is provided in the follugvsection.

The plots in the next sections are grouped to illuminate feswes: The first is a comparison
of the single shift heuristic with the average and optimagk shift, giving an impression of its
usefulness (section 5.2.2). Then, second, a comparisdmedieuristical single shift algorithm
with the multiple shift algorithms, using standard sphegriis done (section 5.2.3). Following, as
the third set of plots, is a comparison of standard sphemdgnaise-robust sphering techniques for
the multiple shift algorithms (section 5.2.3). The fourtiddinal set visualizes the performance of
multiple shift algorithms on data with spatially correldtsensor noise (section 5.2.4).

For the evaluation of noise-robustness simulations wermeed with varying levels of sensor
noise. Most graphs show plots of the Reconstruction Errainagthe noise level, measured in dB.
Higher noise levels correspond to a lower decibel value aedhas visible in the left part of the
plots, while lower noise levels appear in the right part. e signal to noise ratio for zero noise
is infinity, the corresponding value is not show in the pldtss generally not very different from
the first noise level shown in the right part of the plots, aayw

In the end of this section a plot is shown which relates theents@vel of correlated noise with the
percentage of successful runs. For white noise nearlygdirations were successful, so their plots
are not shown.

It is obvious from theRE versus noise level plots that different mixing matricedd/idifferent
quantitative results. Generally, it appears that for higlomdition numbers of the matrices (greater
than about 10 to 15) the resulting Reconstruction Errorss Eable; the error bars in the plots
of the RE are significantly higher. A separation is often still possitbut it depends more on
the actual noise (not only its variance) and for the graditrstcent algorithm also on the initial
parameters. A general law, that mixing matrices with highdititon numbers are harder to invert

2See explanation in section 4.2.3.
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than for low condition numbers, was not observable; evercémdition numbers of above 20 it
was sometimes still possible for algorithms to find good sewstimates.

Results were obtained for two different mixing matrices,jchihcan demonstrate the typical be-
havior of the algorithms. The matrices are given in table 5.1

—0.9497 —-1.6834 —1.4192 —0.4326 0.2877 1.1892
1.0313 —1.6144 —1.6555 —1.6656 —1.1465 —0.0376
1.5354 0.5658 1.1511 0.1253 1.1909 0.3273

Matrix 1 Matrix 2
condition number 8.57 condition number 3.73

Table 5.1: Two mixing matrices used for noise analysis @rpemts.

For each mixing matrix and noise level several (usually )ree separations are performed,
where each time different noise (of the same variance) iecdal the mixtures. Thdpa algo-
rithms are run 3 times on each mixture set, with differertiatization; thereafter, the best run is
counted. This is intended to compensate for the dependanitétial values of the parameters of
the gradient descent optimization. All other algorithme deterministic for a given mixture and
do not need multiple runs.

The variance of the normally 10 runs for each algorithm andentevel is shown in the plots as
an error bar at % SEM (Standard Error of the Mean) above and below the meanSEM s the
standard deviation of the Reconstruction Error for the runs normalized by theasg root of the
number of runsu:

o

SEM = (5.2)

Bl

5.2.1 Separation Example

To give an impression of the separation capabilities ofdéfifit algorithms some separation results
are presented in figure 5.3. It is obvious that the sensoermanot be filtered out by these BSS
algorithms (all estimated sources are still grainy), bet $burces are clearly recognizable. The
cor and to a lesser degree tfae0 algorithm let traces of one source be visible in another one.
The other algorithms do a very good separation. To give amdsgion of the meaning of the
Reconstruction Error, it is given next to each separatisalte

The mixing matrix (condition numbet.1) used for this example is:

—0.3497  0.4216  0.1838
0.1915 —-0.9357  1.9059
—0.2875 —0.6827 —0.6122

Another important thing to note is that tR& for thejacl anddpal algorithms is less than for the
original sources, which is larger than zero. This meansttigadriginal sources are not completely
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Sources Original sources used for
the simulations
RE =0.0236

Mixtures: Mixtures with added
sensor noise (std. dev. 0.8)
condition number of mixing
matrix: 5.1

RE = Inf

Sphered Data

The data after sphering using a
shift by one pixel

RE = 0.4496

cor: Separation result of theor
algorithm
RE =0.2163

jacO: Separation result of thacO
algorithm
RE =0.1359

dpa0: Separation result of the
dpa0O algorithm
RE =0.0301

jacl: Separation result of thacl
algorithm
RE =0.0176

dpal: Separation result of the
dpal algorithm
RE =0.0191

Figure 5.3: Example of separations and the Reconstructimr Echieved by different algorithms.
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uncorrelated, and the two mentioned algorithms succeeddinfj estimated sources which have
less correlation than the original ones.

5.2.2 Choice of Shifts

Experience shows that for the ESD algorithm the choice okthgle shiftis very critical for the
quality of separation. To automate the selection of the shifalgorithm ¢or) was implemented,
which uses the sizes of the cross-correlation matriceseofdbpective shifts for its choice; figure
5.4 gives in the second row three examples of how this heufmbks like for different shifts.
Compared with the images showing tR& for the corresponding shifts (these are shown in the
top row), itis perceptible that generally the regions wittimal values (light) for the heuristic are
in places where the separation quality is good (dark valuehe rightmost images a pathological
example is shown, where the maximum of the heuristic is jusha of the few shifts for which
the separation fails.

maximum 1.4134 maximum 0.6028 maximum 0.1735
condition number 8.57 condition number 3.73 condition nanth18

Figure 5.4: This figure shows the quality of separation féfiedént shifts (using the single-shift
ESD algorithm) and the value of the correlation heuristiedufor thecor algorithm for mixtures
of three different mixing matrices. In the top row tR& values are shown as gray levels normal-
ized between 0.0 and 1.0. l.e. a white pixel denotes a failuhle dark pixels indicate a good
separation for the corresponding shift. The correlatianriséc images in the bottom row are nor-
malized between 0.0 and the maximum of the values for eactixpahich is printed below each
image. The zero shift is in the middle of the images and theldysrcorrespond to shifts of 30
pixels up, down, left and right.

Figure 5.5 shows, that the heuristical choice normallydged quality much better than for the
average shift (at least for this data set) and relativelgelto the optimal single shift. For all
evaluated noise levels tHRE value is very close to or at least closer to the optimal slafte

than to the average one. For some mixing matrices, on the b#rel, its choice of shift can
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Figure 5.5: Shift selection strategies are compared faglesishift ESD algorithms. Theor al-
gorithm often selects shifts which yield estimated soumheseRE is much better than for the
average shift, for low noise levels very close to that of themal single shift.

0.5 .
REopt
- REmean
o4 RE
5 — cor
LI‘] -
g0
B
2
3
50.2
(]
[0}
@
0.1
0 : " ,
-10 -5 20 25 30

0 5 10 15
Signal to Noise Ratio (dB)

Figure 5.6: An example of results for a mixture matrix (cdioei number 6.18), which makes the
cor algorithm to select bad shifts.

be bad, as the example in figure 5.6 shows. In this case theasiepafor medium noise levels

fail completely, and for higher noise levels it fails oftemhile the rest show a high SEM with a
mean above the average shift. Only for low noise levels it 15 dB the heuristic works well.

Unfortunately the correlation heuristic has its maximumtfie evaluated region of 30 shifts in
each direction) often at one of the few points where separdéils (see figure 5.4). For the other
mixing matrices it has its maximum in the regions with verypdaeparation qualities.

Personal experience with tmeulti-shift algorithms indicates that the exact choice for the set of
shifts is not critical, although it is useful to take the ramgf auto- and cross-correlations of the
sources into account. Experiments have shown that a mapea$eparation qualityRE) for
different shifts is relatively smooth, i.e. similar shiftsostly give comparable separation results
(see top row of figure 5.4).

For the simulations with the artificial data in this chaptesefof shifts in form of a star was used
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61x61 Square with Star-Pattern

Figure 5.7: The set of shifts used for multi-shift simulasawith toy data.
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Figure 5.8: Single- and multi-shift algorithms are compafer two different mixing matrices.
Only standard sphering is used.

for all algorithm. it is shown in figure 5.7. The star includdk8 shifts with a distance of 1 pixel,
as well as shifts of 3, 5, 10, 20, or 30 pixels up, down, lefihtj and in direction of the 4 diagonals.

5.2.3 Sensitivity to White Sensor Noise

Nearly all simulation runs in this subsection were sucegsse. each algorithm returned sources
with a finite Reconstruction Error for almost every mixtu@ly two runs of thedpaO algorithm
on the mixing matrix with condition number 8.57 were unssstel.

Comparison Single/Multiple Shifts

In figure 5.8 the Reconstruction Error is plotted for a singled two multiple-shift algorithms,
for two different mixing matrices. Only the standard sphgriechnique is used. The results
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Figure 5.9: The separation performance of multi-shift dthms; standard sphering and noise-
robust sphering are compared.

are typical: The Jacobi algorithm has problems already &y Yow noise levels and usually
returns the worst source estimations. The gradient desdgotithm is performs very well for
low to medium noise levels. It is often worse than the sirgiét algorithm €or) for high noise
levels, but that depends on the mixing matrix; particuléolymixing matrices with high condition
numbers, above 10, no prediction about the order of the gmadiescent and the single shift
algorithms is possible. Furthermore, the error bars ofezone very large for the gradient descent
algorithm for high noise levels.

An important observation, when figure 5.8 is compared withrégb.5), is that the gradient de-
scent method can return source estimates, which are bedtethiose of the optimal single shift.
Although this is not true for all mixing matrices it shows tliteacan be advantageous to use infor-
mation about correlations for several shifts.

It is obvious from the bad performance of the Jacobi algorithith standard spheringacO) that
it is unable to cope effectively with sensor noise. For alnatismixing matrices its performance
is much worse than that of all other algorithms.

Noise-Robust Sphering

The plots in figure 5.9 show the performance of both multftsdlgorithms @pa andjac) using
standard sphering, as well as using noise robust spherirgya feference the Reconstruction
Error for the single shift algorithm is also given. While teandard sphering variants have the
same curves as in figure 5.8, the variants using noise rophstiag provide very good source
estimates for all noise levels. For high noise levels thesexa good as for low noise levels, and
very much better than those given by the single-shift atorior the standard sphering variants.
The separation quality gacl anddpal is not significantly different.

It is obvious that the separation performance greatly imggsdoy using the noise robust spher-
ing technique. This observation holds for all mixing mats@nalyzed by me, and although the
Reconstruction Error for both algorithms often increaseshfgher noise levels, if other mixing
matrices are used, it normally stays far below that ofdibie dpa0O andjacO algorithms.



Extended Decorrelation Methods- Diploma Thesis - Holger Schéner 39

0.5 0.8
0.7
0.4
§ §0.6-
| m
503 509
g 3
3 30.4
2 2
502 So0.3
() [
[ @
0.2
0.1
0.1
-5 0 5 10 15 20 25 30 35 -5 0 5 10 15 20 25 30
Signal to Noise Ratio (dB) Signal to Noise Ratio (dB)
condition number 8.57 condition number 3.73

Figure 5.10: The separation performance of multi-shifoatgms evaluated for spatially corre-
lated noise; standard sphering and noise-robust sphanndjfferent shifts are compared.

Another point is noteworthy: Thgac algorithm is more sensitive to sphering errors thandpa
algorithm. The gradient descent algorithm using the stahdphering technique is able to com-
pensate for sphering errors, and thus shows reasonabt&mparice at least in the medium noise
level zone. The Jacobi algorithm gains much more by usingdiige robust sphering, because it
can not compensate for incorrect sphering.

5.2.4 Sensitivity to Noise with Non-Zero Spatial Auto-Corelation

During analysis of the data set presented in section 6 thetignearose how BSS algorithms
would perform if the sensor noise was spatially correlatétie possibility of the noise in the

optical imaging data being correlated could not be exclugetheoretical considerations, and so
the effect of correlated noise was evaluated for the toy sigita

Spatially correlated noise can influence the separatidiomeance of the algorithms presented in
this thesis, because they use information in spatial atiogis of the mixtures, which is modified
by correlated noise.

car) = (ymy"(r+an) (53)
= <DAs(r)sT(r + AI')ATDT>r + <Dn(r)nT(r + Ar)DT>r +

(DAs(r)n” (r + Ar)DT>r + (Dn(r)s” (r + Ar)A"DT)

r

If the added noise is spatially white then the expectatidue/éDn(r)nT(r + Ar)DT> is zero

except for the zero shifhr = [0, 0]”. For noise which is independent of the sources, the third and
fourth term (correlation between sources and shifted naise between noise and shifted sources)
are also zero. Then the noise has no influence on correldtorighers than the zero shift (for
non-vanishing noise its variance always influences cdiogla for the zero shift). If, on the other
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hand, the noise is correlated, then itinfluences all cdioglanatrices whose shifts are in the range
where the auto-correlation of the noise is unequal to zero.

The noise used for the simulations described in this suloseist produced by filtering (blurring)
Gaussian white noise with a Gaussian of variance 1.0 pixdcharmmalizing the result to the given
noise level (standard deviation) by multiplying the noiseters by the ratio of wanted standard
deviation and actual standard deviation.

The simulations were performed using sphering matricesas shifts between 0 and 6 pixels.
1 pixel, as used ifjacl anddpal are very few, as the correlation of the noise is still large fo
a shift of one pixel. The results are not shown for all shifts,the separation quality does not
improve significantly above shifts of 3 pixels, while theukts become less stable for larger shifts
(more unsuccessful separations). The number of approgiynatpixels is plausible, because for
values of three times the standard deviation from the meaauss$ian is almost zero, i.e. the
auto-correlation of the noise should be close to zero foifast3 pixels.

Figure 5.10 shows the Reconstruction Errors of the mulft-siigorithms for different sphering
shifts. The effect for the Jacobi algorithm is very cleat doithe small error bars: For a sphering
shift of O pixels it performs worst, a shift of 1 pixel impravés performance, while the optimal
performance is reached for a sphering shift of 3 pixels. &ashifts do not show a significant
improvement (not shown in the plots). For the gradient datsafgorithm the effect is similar,
although the differences for the various sphering shifsrat as significant, because of the larger
error bars. Often the gradient descent method performerbibitan the Jacobi method, because
its mean performance is often below that of the other; on therchand, the error bars for the
gradient descent algorithm are much larger, indicating teBability of the separation quality. In
the low noise region th@c3 algorithm often has light advantages overdgla variants; in the
regions with higher noise levels, the gradient descentritiigos give slightly better performance.

The results in these plots again show that the Jacobi metbpends very much on the sphering
technique used. The differences for the gradient desceiatns are less significant and indicate
that these are much better in adapting to incorrect sphering

While the simulation runs for white noise were successfuhfearly all algorithms and noise lev-
els, more unsuccessful separation occurred for the simntatising spatially correlated noise,
even for the same mixing matrices. Figure 5.11 shows theeptage of successful runs of the
algorithms for different noise levels. For low to mediumgw®levels most simulation runs return
successfully separated source estimates. For high naisks Ieft part of the plots) the Jacobi
algorithm variants have usually a higher number of sucoésshs than the gradient descent algo-
rithm. The single shift algorithm usually returns less sssfully separated source estimates than
the Jacobi algorithm, but more than the gradient descent.

Up to a shift of 3 pixels in the sphering procedure the seargterformance normally gets better
with larger shifts (both fojac* anddpa* algorithms). A sphering with a shift of 3 pixels, on the
other hand, already seems to be less reliable, despitehigswise good separation quality, and
often results in an increased number of unsuccessful rums.iJunderstandable, as the the auto-
correlation of the noise becomes nearly zero for shifts @feheliminating contamination of noise
and improving the separation quality. On the other, the-aateelations of the sources normally
become more and more different from the variance for largétss which making the sphering
and consequently the Error minimization more erratic.
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Figure 5.11: The success rates (percentage of runs viRterg oo) of the simulations in figure
5.10.



Chapter 6

Results on Optical Imaging Data

This chapter covers the simulations performed on opticalgimg data sets. The data set used
here is the same as described in [S9M], although a slightly different preprocessing is applie
before the actual BSS is performed. In the following the fatrof the recorded frames is de-
scribed, followed by an explanation of its preprocessiegutts of source separation simulations
are presented thereatfter.

6.1 Optical Imaging Data Set

CCD-camera,

Tungsten
SMD-1M60

halogen lamp

narrow bandwidth ==
filter 10 nm) —— Pentium || data
pro ;
200 MHz analysis
stimulus monitor ' ]
—
/ <
ethernet, data
control 100 Mbit/s storage,
9 GByte
i PC
animal Pentium data
ro e
20(F))MHZ acquisition
stimulus control —

Figure 6.1: The experimental setup used for acquisitioh@biptical imaging data. The reflections
of orange light (wavelength 633 nm) from a part of the visuatex of a monkey are recorded by
a CCD camera, possibly during presentation of visual sfitoithe monkey. The frame stream is
preprocessed and stored for later analysis by a PC.

The experimental setup for the recording of the optical imgglata set is shown in figure 6.1.

42
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The data is provided by the team of J. Lund, Department of &ptblogy, University College
London. A CCD camera collects orange light (wavelength 633 reflections from the primary
visual cortex of a macaque monkey during presentation wfudti The structure of the recorded
frames is visualized in figure 6.2. During each trial frames r@corded for 8 seconds, with a
frame rate of 16 Hertz. During the first two seconds no stimugupresent; during this period
blank image frames are obtained, which can be used for pregsng later. Starting with time
t; = 2 sec. a stimulus is shown for a duration of four seconds fgndit, = 6 sec.). After the
stimulus ends the recording is continued for another 2 s¥soBetween two successive trials
a recovery period of 15 seconds passes. Consecutive tralgsaally performed for different
stimulus conditions, to exclude long term reactions in tiseal cortex due to repeated stimulation
with the same stimulus.

The frames recorded by the camera consist of 102124 pixels each. From these 256256
pixel frames are extracted for further analysis. The widtlome pixel in these frames corre-
sponds to 14.80.5 um of cortical tissue. The 256 pixel frame width accordingyrespond to
3.7+0.1 mm of the cortex.

All simulations in this chapter used image stacks, whichenecorded with stimuli applied to
either only the right eye or only the left eye. These stimwdravintended to produce frame stacks
which could be used for extraction of ocular dominance m8pgh maps indicate, which regions
react to stimulation of the left eye and which to that of thghtieye.

6.2 Preprocessing of Data

The recorded frames described in the previous sectioniocatarge amount of noise and artifacts
which are unrelated to neural activity in the cortex. To madeextraction of the mapping signal
from these frames easier for the source separation alg@witome preprocessing steps are applied,
which generally try to improve the signal to noise ratio ia frame stack.

One method used is averaging over trials. Several (heraia® fior each stimulus condition are

recorded, which are later summed up to average over noisends corresponding to the same
point of time (with respect to the stimulus onset) in differérials are added to give a frame of
an averaged frame stack. The mapping signal, whose exinastihe goal of these experiments,
and the global signal should have approximately the same sienies in all trials and are thus

amplified, while noise which is unrelated to the stimulud sliow different time series and is thus
partially canceled out.

Another approach for improving the signal to noise rati@mporal averaging. Each of the images
in the data set processed by the BSS algorithms is the sum foduh®s recorded by the camera;
thus each image represents the frames recorded during ooedseThe SNR of the mapping
signal (and again the global signal) versus fast changimgenwhich is different between frames
recorded closely after another will be improved using thiscpdure. Fast changing noise is e.g.
photon shot noise.

The first image of the eight resulting ones, which is recorddidle no stimulus is present, is
subtracted from all other images. This process is called ffiagne analysis. It is intended to
remove artifacts with very slow temporal changes, whichagmeroximately constant during the
8 seconds of recording time for each trial. These could bebtogd vessels. The problem with
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blood vessels is that they change their size due to chandpsdd flow (stimulus related changes
as well as not related ones) during the experiment; thusaghiisoach is not always successful
in removing such artifacts. Furthermore, movements of do@nded cortex with respect to the
camera can make first frame analysis problematic. Such mavisncould for example occur if
the optical chamber is not sufficiently tightened on the Iskithe head of the animal is not fixed,
or because of heartbeat or respiration. After first framdyaigathe first image is completely zero
and left out in the presentations of results; these show géseacorresponding to seconds 1 to 7,
instead of O to 8.

In the experiment presented in the following sections aglargssel occupies part of the image
(see arrow in figure 6.3). It is masked out in the images bynge#ll pixels in its range to zero;
furthermore this region is ignored for calculations of meand variances in the algorithms. The
masked part of the images is visible in the images preseatedds an area with a uniform gray
value. Additionally to the large vessel artifact a peak fiteiance approximately in the middle of
the images is masked out. This peak could be caused by diftattion of the light source on the
surface of the cortex.

To further improve the signal to noise ratio in the imagesvestigated lowpass filtering with
different frequency limits. This procedure eliminates gaments with a spatial frequency above a
given number of cycles per 256 pixels (the image width). Tegudency limit which visually gave
the best results on the optical imaging data was 50 cyclesloarpass filtering with this limit was
used in most of the presented simulations. Alternativehnisig of neighboring pixels could be
used to spatially average over noise. This would make thgésiamaller and thus the algorithms
faster. On the other hand, time is generally not very cliticdhese experiments, and the use of
filtering allows a finer control of the averaging by changihg humber of cycles.

Finally the Blind Source Separation algorithms are apptiedwo types of image stacks: Single
condition stacks and difference stacks. In the differenaeksthe quality of the mapping signal is
further improved. Subtraction of maps with orthogonal siiramplifies the part of the mapping
signal, which changes between the presented stimuli. Gicdbnoise, especially the global signal
and vessel artifacts which are still remaining after thegding steps, is reduced greatly. On the
other hand this step also amplifies sensor noise like phdtohrwise, and the interpretation of
the resulting maps is different for difference maps tharsfogle condition maps, because of the
underlying assumptions about orthogonal stimuli. For stypes of stimuli it may also be hard to
come up with orthogonal ones.

The following is a summary of all steps used to improve theaigo noise ratio for the mapping
signal compared to the raw frames recorded by the camera:

e Summation of several trials for the same stimulus

e Temporal summation (each image contains frames of one dgcon

¢ Binning of pixels

e First frame analysis

e Masking of areas with too much contamination by noise ordgjiwal artifacts
e Lowpass filtering

e Difference stack
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e The BSS algorithm was optimized for its noise robustnesdtijhei shifts, non-rotational
demixing matrix)

6.3 ESD for Optical Imaging
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Figure 6.2: Format of recorded image stacks. The first frasri@ank (no stimulus is present);
from t; = 2 sec. tot; = 6 sec. the stimulus is presented. The total number of fragmsded is
120, these are later reduced to 7 by temporal averaging andréime analysis. Each of the final
images is the average over all frames the camera recordatycame secondAt¢ is 1 second).
Features gradually pop up and vanish at characteristicstimgr) is the value of the pixel at
locationr in image numbet. Taken from [SSM99].

This section gives on overview about how the BSS framewaakjsied to the optical imaging data
set, and how its structure can be interpreted. The orgamivat the image stack is sketched in fig-
ure 6.2. Certain prototype images can be distinguishetigisketch these are vessels, background,
and the mapping signal. Prototypes are modeled to be line@ked with different coefficients

in each image. The spatial prototype patterns are what isdcaburces in the BSS framework
(see section 4.1); they could represent vessel patteragyltival signals, biological noise, and
the mapping signal (local activity of neurons related tensius). Thus the mixing coefficients
tell how strongly each prototype pattern is present in iffié frames and can be interpreted as
the time series of the respective patterns. The assumptithmear mixtures is necessary for the
application of the BSS algorithms presented in section £ rEeorded images also contain much
sensor noise, which cannot be modeled as a separate source.

The image stacks used in the optical imaging experimentstawn in figure 6.3. The top row
shows the seven images of the single condition stack, therbhabw those of the difference stack.
Both are shown without lowpass filtering and without maskimgt after first frame analysis. In
the top row, the mapping signal is invisible; only the changkreflectance from the vessels and a
general change in background intensity are visible. Thygelaessel (marked by the arrow in the
second frame of the top row), which is masked out for the satinns, is very prominent in the
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single condition stack. The intensity of reflection by thessel, and also by the background, is
highest during the period the stimulus was presented (fintlages 2 to 5). In the difference stack
the vessel artifacts are almost removed. In the first imagéghwwas recorded while no stimulus
was present, one of its branches still pops up, but otherthisevessels are no longer visible.
Instead, from the fourth to the seventh image the mappingasi@in form of ocular dominance
stripes) is visible.

t=1sec. t=2sec. t=3sec. t=4sec. t=5sec. t=6sec. t=7SsecC.

Figure 6.3: The optical imaging stacks used for Blind Soi8eparation. The stacks are shown
without masking and without lowpass filtering, but aftertfframe analysis. The top row shows
the time-series for the single condition stack (primaryaisortex, ocular dominance experiment,
left eye), the bottom images the one of the difference stdtle stimulus was presented during
recording of images 2, 3, 4, and 5 in each row. In the secondéméthe top row a large vessel is
marked by an arrow; this vessel was masked out for most erpats.

The algorithms in this thesis try to recover the prototypeages from the mixtures (recorded and
preprocessed images) by using their different spatiatstre, i.e. different spatial autocorrelation
structures of the prototypes, and the assumption of zessarorrelation function. The results in
section 6.4 show that in most cases the spatial autocoomrlstructure of the mapping signal is
different enough from that of other prototypes for sucadssEparation.

An alternative would have been to use different temporakstires (time series) of the prototypes.
But the temporal structure of the signal specific to localvagtof neurons is related to the global

signal, and so it may be hard to use temporal autocorrelatimctures for the separation task. It
was tried by others, but the result turned out to be not vemynising and was not further pursued.
Further comments concerning this topic are given in secti@rR.

6.3.1 Statistical Characterization of Optical Imaging Daa
Noise

The experiments on artificial data were mainly intended to g&#ormation about the behavior
of the presented algorithms for different levels and typlesoise, and sphering techniques. The
optical imaging data set was not suitable for this task, &heresources nor noise (type and level)
are known. Nevertheless some analyses on this set were age¢ tough estimates of the noise
present in the data, and to decide whether other analysesisaef had to be done on the artificial
data set.

These analyses were done for the ocular dominance domimapegiment presented in the last
section. The unfiltered frame stack with 120 frames, savéar®d¢éhe accumulation in one-second
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intervals took place, was used. The first 16 frames of thisksfabout the first second of the
summed trials) were used for noise analysis, because thegt@ontain signal components related
to the stimulus presentation (the stimulus presentatiosstkarted after the 32nd frame, after two
seconds). All differences between successive images walea s an estimate of the noise. It has
to be noted that part of this noise is averaged out in the irtagiks used for the BSS experiments,
because of the accumulation of one second intervals.

One type of analysis concerns spatial correlations of tigenoe. spatial whiteness. First the mean
of each difference frame was normalized to zero and its negido one. Then the spatial auto-
correlation was computed by shifting each frame by shiftmecin the square fron—5, —5) to
(5,5) and multiplying it element-wise with its unshifted versifignoring the pixels, which were
beyond the border of the other frame). All multiplied pixelere summed and then the sum was
normalized by the number of multiplied pixels. Thus an atgoelation was obtained for every
difference frame for shifts around the zero shift. Theseutations showed no significant spatial
auto-correlation for the noise. With the variance nornealizo 1.0, all auto-correlations for non-
zero shifts are below 0.058 for the single condition staak laglow 0.02 for the difference stack.
Thus both the single condition stack and the differencekstaatain spatially white noise. The
similar results for different sphering methods, for thedigat descent as well as for the Jacobi
method (see section 6.4), also indicate that the spatiatlation of the noise is not critical in
these data sets.

Analyses of the spatial mean of these difference series simoscillation of about 2 Hertz (see
figure 6.4). This is probably caused by pulses of the blood @ovespiration, and not intrinsic in
the noise itself. Furthermore it should not influence theegixpents on the 7-frame stacks, as those
work with frames accumulated over 1 second, which approidma@ancels out this oscillation.

60, T . . . 8

60r

spatial mean of frame differences
spatial mean of frame differences

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time [seconds] time [seconds]

Figure 6.4: Plots of the spatial averages of the differerarées of the first 16 frames (for the
120 frame stack). This corresponds to about the first secbretording, where no stimulus was
applied. The left plot corresponds to the single condititatls the right one to the difference
stack. An oscillation with a frequency of about 2 Hertz ishiis in both plots.

In figure 6.5 the temporal correlations of the frame diffeeiseries for different time lags are
given. The procedure used for their computation is this tdanwhereC;(At) is the mean (over

pixels) of the temporal correlation for time lagt, and D, (r) is pixel r of the difference between

framest andt + 1 (D, is imaget of the difference series):



Extended Decorrelation Methods- Diploma Thesis - Holger Schéner 48

Cy(At) = ((Dy(r) Dy ai(r)),), (6.1)

In this equation the time indexruns from 1 to the number of difference images (15) midus
Before application of this equation the mean of the timeesefor each pixel in the difference
frame images are normalized to 0 and the variances to 1. Tiatien then computes the the
temporal correlations of each pixel for a time lag offg), 1% ...seconds. Of the resulting images,
showing the temporal correlations of all pixels for a giviene lag, the spatial mean is taken. This
results in a vector of 15 numbers, the spatial average ofaeshporrelations for 15 different time
lags. These are shown in the plot.
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Figure 6.5: Two plots showing the temporal correlationshef tlifference series of the first 16
neighboring frames for the 120 frames stack for differemetiags. The left plot shows the corre-
lations for the single condition stack, the right for thefeliénce stack.

For the single condition stack as well as for the differernieeksthe noise shows a strong negative
correlation for a time lag ofll5 second, i.e. between neighboring frames in the 12-framek.sta

Although | have no explanation for this phenomenon, its &rflte on BSS should not be too large,
as the correlations are of very short duratiég gec.), while the BSS algorithms work on images
summed up over longer periodsgec.).

Concluding, it seems that, as far as these analyses wempigeshould not pose harder problems
to the BSS algorithm than was tested on the artificial data Be¢ main point is that no spatial
correlation seems to be present in the noise, which is béalefgpecially for the Jacobi algorithm,
but to a lesser degree also for the other algorithms.

Auto-correlation of Estimated Sources

The BSS experiments with the gradient descent algorithrmedeo provide very good source
estimates for the optical imaging data set, both for difieeestacks and for single condition stacks
(although the maps obtained from latter can naturally n@selear as the one obtained from the
former). | used these results, which are given in sectionté.4dompute the auto-correlations of
the estimated sources. The computed auto-correlations sbhme artifacts in form of circles,
which are due to the lowpass filtering used. Nevertheless; itlustrate the differences of the
autocorrelation structures for different (estimated)rses. The one of the mapping signal (image
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4 for the single condition stack and image 6 for the diffeeestack) is much broader than all else,
i.e. light color, indicating high auto-correlation, extisnfurther.

1 2 3 4 5 6 7
Figure 6.6: Auto-correlations of the sources estimatedhbylpal algorithm, for the single con-
dition stack (top) as well as for the difference stack (bojtoThe zero-shift is in the middle, the

borders correspond to shifts of 15 pixels up, down, left, agdt. The images from left to right
are in the same order as the corresponding sources giveruiedi§.8 and 6.10.

Correlation Heuristic

In the section about experiments on artificial datadbealgorithm seemed to perform reasonably
well, compared to the optimal single shift. For the opticahging data an objective separation
quality measurement function is lacking (tRE cannot be used, because the real sources are
unknown); to nonetheless be able to automate the choiceeo$hitit used for separation this
heuristic was devised. It would be unpracticable to explosing visual inspection of the quality

of the results, a wide range of possible shifts for the optinaging data. Several shifts have to be
analyzed to get a good chance that one is among them which gigeod separation.

Single shift experiments with arbitrarily chosen singlédtsiseemed to indicate that, for the optical
imaging data set, the best shifts are in a relatively smglbreof about 5 pixels around the zero-
shift. The cross-correlation heuristic, on the other halogs not seem to choose shifts which give
a good performance on the single condition stack. To exphesebehavior further, | computed the
value of the cross-correlation heuristic for all shifts isquare of 30 shifts into each direction (a
square of 6% 61 shifts).

In figure 6.7 the values of the cross-correlation heuristictfie sphered single condition and dif-
ference stacks are shown. The image of the heuristic vatuesdtively smooth for the single

condition stack, while the difference stack yields one wiitbre structure. Contrary to the obser-
vation, that good separation results are often achievednfiall shifts, the values of the heuristic
are very small for small shifts, and show several peaks (@udifference stack) or a general rise in
their level (for the single condition stack) for larger $kifThe artifacts in form of circles around
the zero shift are introduced by the lowpass filtering. | @smputed the heuristic for unfiltered
image stacks; they showed a less smooth structure, but ndteame tendency to give high val-
ues for larger shifts. Especially the region, which showsss peaks in the given image for the
difference stack (to the left and right of the “valley”), iery noisy (and gives very high single
pixel peaks) when using unfiltered image stacks. The sdparedsults corresponding to these
high peaks are generally relatively poor.
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It seems that the cross-correlation heuristic does not wenkell for the optical imaging data as
the experiments on artificial data suggested. This showshisamethod cannot be an automated
replacement for visual inspection for selection of singdlits.

Maximal value (white): 1.8318 Maximal value (white): 5.768

Figure 6.7: Cross-correlation heuristic (see formula %fbb the sphered filtered single condi-
tion stack (left) and the sphered filtered difference staight). The middle pixel in each image
corresponds to the zero shift, the borders to shifts of 38lpiMp, down, left, and right.

6.4 Results

The following two subsections show images which illustrite separation ability of thepa
algorithm on optical imaging data. Different types of imaggcks are used: Both single condition
and difference stacks are analyzed. More examples are stopvamgle condition stacks, as it
is more difficult to extract the ocular dominance maps forstho They are also important for
interpretation of the maps, because they do not introduegrbblem of selection of orthogonal
stimuli, which is necessary to produce difference maps. &sassumptions have to be made about
the organization of the cortex in order to select orthogatiahuli: Disjunct neuron populations
must be excited by those stimuli.

Besides the variation of the image stack types, the influehpeeprocessing the stacks is evaluated
and visualized by providing examples of separations usiritered and unmasked image stacks.
To illustrate the benefits of thdpa algorithm, separation results of the other algorithow @nd
jac0) are also given.

In general experience shows that both the gradient desoenthe Jacobi algorithm give good
separation results on the optical imaging data. The Molg&d8chuster algorithm is again very
sensitive to the shift used for decorrelation. Even for gsbidts (i.e. shifts giving a good ocular
dominance map) it still fails most times in separating or@totype patterns like vessel artifacts
as well as the multi-shift algorithms do. The Jacobi aldponitis in general very reliable. The
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gradient descent algorithm, on the other hand, has to be feww imes, of which the bestresult
is chosen, to give reliable good results. But then it is oftessible to obtain separations which
are even slightly better (using visual inspection) tharséhgiven by the Jacobi algorithm.

6.4.1 Single Condition Maps

Figure 6.8 shows quite good separation results for a simgldition stack, which was preprocessed
using all of the techniques mentioned in section 6.2: Tempand spatial averaging, averaging
over trials, masking, and lowpass filtering. The seventhcoestimate for thdpa0 algorithm and
the fourth for thedpal algorithm are the ones representing the ocular dominanipest nearly
nothing of this structure remains in the other source estimjand almost no vessel artifacts are
visible in the map. The projections of the maps onto the inwigek also show a plausible time
series, which begins around zero (no stimulus present ibeéh@ning) and rises to maximum in
the middle (when the stimulus ended) after which it slowlgales. None of the other sources
shows a similar time series. The units of the Y-axis for thekharojections is arbitrary, as the
sources can only be estimated up to an unknown scaling antugegion. The X-axis is the time
in seconds from the start of recording of the trials. It ranfyem 1 to 7 seconds because the first
frame was used for first frame analysis. The stimulus wasepted during seconds 2, 3, 4, and 5.

Most of the other estimated sources contain mainly bloodelesrtifacts. Blood vessels probably
have different spatial and temporal characteristics, dipg on their size and distance to the
main arteries, which supply larger areas with blood. Scetlzesfacts are spread in a few sources.
The rest of the estimated sources mainly show noise, whiibates that the number of mixtures,
seven, is more than the number of sources present in theTdadourth estimated source for the
dpa0 algorithm could be interpreted as representing the glalgab caused by blood flow and
volume changes, which spreads through the capillary bed the large vessel. It is lighter close
to the (masked) large vessel(s) on the top and left side atdahbng the smaller vessels. The
farther away from the large and small vessels, the darkegrdne value. Only one vessel artifact
is not separated and still visible in this image.

Another observation which can be made in this figure is thtt bphering variants for the gradient
descent algorithm show similar performance. This alsoieppb the experiments | did with the
two Jacobi algorithm variants. These observations indjdhgt the noise level is not very critical
in the image stacks. It seems, that the number of shifts usedefcorrelation suffices for noise
suppression. This conjecture is also supported by thetséysdf the Molgedey & Schuster
algorithm concerning the decorrelation shift.

Figure 6.9 shows the results of ther andjacO algorithms on the same single condition stack,
to provide a possibility for comparison with the gradienscknt algorithm in the previous figure.
The jacl algorithm is not shown because of its similar performancih wespect to thgacO
algorithms. Inthe separation result for ttwr algorithm it is obvious that the oxygen level gradient
is not separated from the ocular dominance map (image 5)thétnore, vessel artifacts are
visible in all of the estimated source and are not concesdrat a few images, as they were in
the previous figure. The separation result of the Jacobridhgo is nearly as good as that for the
gradient descent method; only slight residuals of a vestiéa are visible in the map (image
4). Otherwise the blood vessels are well concentrated irstumces, and the (supposed) oxygen
gradient pattern is again visible as an own source (althshigttime inverted).

!As an objective measurement of the separation quality ipossible, because of the lack of a suitable cost function,
visual inspection has to be used to determine the qualitgpésations.
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6.4.2 Difference Maps

Figure 6.10 shows the separation results for the differémege stack (stack for stimulation of
the right eye is subtracted from stack for the left eye), witlherwise same preprocessing as in the
last subsection. The ocular dominance stripes are nicgigrated in their own source, and also
the back-projection on the image stack shows, as the onlytbeexpected time series. All other
sources show almost only noise. This result is very simdarafl analyzed algorithms, which is
why only the result for the gradient descent algorithms &spnted here.

6.4.3 Maps obtained for different preprocessing

In figure 6.11 the BSS results for image stacks using lesg@repsing are given. The top is a
single condition stack without the filtering used in prexd@axperiments. Although the separation
is quite well (vessel artifacts concentrated in few sour¢tke mapping signal concentrated in
one source), the quality of the ocular dominance map is ngbad as for the filtered stack. If the

masking is left out for single condition stacks, the sepamnatf the mapping signal fails completely

(the mapping signal is not recognizable in any of the estihaburces). The correlations of the
large vessel seem to be dominant in this case.

The bottom shows the data set and separation results forraasked and unfiltered difference
stack. Due to the missing filtering the map quality is worsmthisible in the previous figure; but
still the separation works reasonably well (map concesdraét one source). Only the contamina-
tion by the large vessel not masked out this time mars themngicEor single condition images the
contamination by the large vessel was too dominant for thieiaition of good ocular dominance
maps from unmasked image stacks.
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Chapter 7

Discussion

In the beginning the main goal of this diploma thesis coadigt the development of a blind source
separation algorithm, which would be robust against nasd, perform superior to other known
algorithms on the optical imaging data set. The basis ferdlgorithm was the Extended Spatial
Decorrelation (ESD) algorithm, presented in [MS94, S94d], and the result is the accelerated
gradient descent algorithm. Later the algorithm calledBamethod in this paper was published
with a more noise robust sphering method in [ZM98, MPZ99]tiis algorithm is closely related
to the one developed in this work, it became important to berark different variants of spatial
decorrelation algorithms on different data sets, conoerttieir noise robustness.

Blind Source Separation was introduced in [HJ86]. At the raptrthree main directions of re-
search can be identified in the BSS area. One is the idea pedsen[MS94, SSM99] (ESD
algorithm), to use shifted correlations as additional t@msts, compared with basic Principle
Component Analysis. Latter itself is only able to give umetated components, which can still be
statistically dependent. The components found by PCA nedxt trotated further to make them
independent. Only if the mixing matrix is symmetrical, PCéncextract independent sources.
Shifted correlation matrices can provide further inforimatabout the structure of the sources,
which allows to determine the correct rotation.

Another approach is rooted in information theory. An exasfpdbm this class of algorithms is the
infomax algorithm, published in [BS95], which derives arfeag rule for the weights of a neural
network. Its goal is to make the outputs statistically irelegent by maximizing the information
transfer of the network, thereby minimizing mutual infotioa between the outputs. The authors
give a connection between their (feed-forward) network ehadd the recurrent one used by Jutten
and Herault, by providing a formula translating the netwwsdights from one model into the other.
Also a comparison of Jutten and Herault’'s network model Witherror minimization of the ESD
algorithm is given in [MS94]. Although the learning funat®are quite different, the underlying
network models are isomorph.

Another way of obtaining independent sources uses inféomatrovided by certain types of
higher order moments of the data. Timomaxalgorithm uses theanh-function as contrast
function, thereby exploiting all orders of statistics. @8] proofsinfomaxto be equivalent to a
Maximum Likelihood approach. Although statistical indeagdence involves statistics of all orders,
other algorithms take into account only a restricted sehefttigher order statistics. This may be
motivated by the fact, that the value of cumulants diminssttee more, the higher the order is.
Furthermore, the number of elements in the higher order tamhtensors rises rapidly, posing the
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question of how they can be estimated using a finite data st.kbwn algorithms using fourth
order cumulants as contrast function are [Com94, CS93]HDY7] a fast fixed point algorithm
is presented, which uses information about the kurtosisdasure for the peakedness of a distri-
bution), the diagonal elements of the fourth order cumui@nsor. Even though these algorithms
do not use all orders of statistics, they have been shownrterghy work well.

One algorithm of each of these groups was evaluated in [S¥Ylon the same optical imaging
data set which was used in this thesis. Although the othehodsthave a strong theoretical back-
ground in information theory, the ESD algorithm seemed tbédxt adapted to the optical imaging
data set by using its broad autocorrelation function, whsckgnored by the other algorithms.
Together with the idea to use multiple shifts this providegoad starting point for improving
existing algorithms to achieve better noise robustness.algorithms of the ICA area, many of
the theoretical results about convergence are only valtiérabsence of noise. Furthermore, in
[SSMT99] the two ICA algorithms performed worse on noisy, but Eiigtsmooth, data than did
the ESD algorithm.

A comparison of the algorithms related to ESD, provided is thesis, shows that, although it
is the slowest algorithm, the gradient descent method isnbst flexible and noise robust one.
Its advantage when compared to the original algorithm mpitesein [MS94] is its use of multiple
shifts, which makes the selection of shifts less criticad allows to average over noise. When
compared to the Jacobi method, which also uses multiplésstii$ restriction of the demixing
matrix during the optimization process is more approprtata the constraint to an orthogonal
(rotation) matrix the Jacobi method imposes. This is paldity true for the use of inappropriate
or unreliable sphering methods in the presence of noise.

Even though the gradient descent algorithm performed be&toth data sets examined in this

thesis, it has some clear limitations. First, a linear ngqamocess is assumed in the model of BSS.
It is, on the other hand, not clear at all, how the differeghal components in optical imaging are

mixed in the image stacks. It could be worthwhile to pursueittea presented in [MS94], to use

several shifted correlations for the estimation of nordnity parameters in an extended model.
The difficulty would be to create a realistic nonlinear mgimodel (see discussion in [SO99]).

Second, the accelerated gradient descent algorithm aslicbnsiderable problems with conver-
gence on complex data sets. On the single condition stackee afptical imaging data set about
four or five runs of this algorithm were necessary to obtaindyeeparation results. The other
algorithms (Jacobi method, ESD) give deterministic sohgj which do not depend on parameter
initializations, except for the sphering. A minimizatioropedure for the cost function would be
needed, which reliably finds the global optimum, withoutstosining the demixing matrix in the
way the Jacobi method does.

Third, the computation time needed for the acceleratedigmadiescent, although suitable for
interactive work, is still too high for applications in raghe environments. It would be of much
help, if a realtime BSS method could be provided, which aldwhe experimenter during optical
imaging experiments to extract maps from the recorded insé@eks, which could be viewed
online on a monitor. This would allow to better control andimize the experimental setup, and
the stimulus choices and presentations. An improvemertrimptitation speed could be achieved
by using spatial binning instead of lowpass filtering, redgcthe size of the images and thereby the
amount of computations needed. In addition to an improvemneromputation speed, a function
computing the quality of separated sources is necessaryealdime environment, because of
the stability problems of the gradient descent method. @nother hand, in comparison with
other algorithms the inefficiency in computation time issleslevant when considering that all
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algorithms tested in this thesis need to compute a set oflation matrices. This step consumes
at least half of the time of the Blind Source Separation rdepending on the algorithms (for a set
of approximately 50 shifts for the toy and Ol data sets). Amiging approach to achieve speed
improvements could be a reduction of the number of shiftsl is¢his computation. This would,
on the other hand, require a more careful selection of thigssipiossibly in conjunction with a
heuristic which works better than tiger heuristic.

Fourth, BSS algorithms make a number of assumptions, witialdde examined closer. One of
these is, that for the ESD algorithm and its extensions, thehber of sources must be the same
as the number of sensors. They seem to be able to deal wittigits, where the number of
mixtures is higher than the number of real sources; sommatd sources then contain almost
only noise. The use of prior knowledge about the real sourocetd be useful in extending the
algorithms to situations, where the number of sources isdrighan the number of mixtures. The
prior knowledge would provide the additional constrainecessary to obtain an unambiguous
solution. Additional research should also explore the biehaf BSS algorithms for the case, that
the time series or spatial auto-correlation structuresgofads are very similar. In the former case,
the mixing matrix would be nearly singular, and hardly irilde.

Experience shows that the choice of shifts for the multitskigorithms is not as critical as for
the ESD algorithm; still it is recommendable to use infolioratbout the auto-correlations of the
sources in selecting the shifts. Some more research cowdrieeto determine the optimal shifts,
as well for multi-shift as for single-shift algorithms. Hattter the cross-correlation heuristic did
not work very well on optical imaging data. For an optimipatiof the selected shifts an iterative
process could be useful, which first gives an estimate ofcesuior an arbitrary choice of shifts,
and then uses the structure of these sources to select nigsv Shtiese are then used to obtain
improved source estimates. Another idea is to pick smddtively homogeneous regions of the
mixtures, e.g. representing vessels, or tissue withosielesto compute local correlation matrices.
These could then be used to select shifts, which are optihtizeeparate sources for those regions.

Like the analysis of difference stacks the use of cocktahks for a normalization and signal to
noise ratio improvement could provide better ocular doméea(and other) maps. Cocktail blanks
are obtained by averaging images recorded from cortex wihiah stimulated by a presumably
complete set of stimuli. The use of an “activate blank” coblve the advantage that vessel
artifacts, which have different blood flow and size, are edaut out better than using an “inactive
blank”. The first frame, used in first frame analysis in thisdi, is an “inactive blank”, because it
is recorded before stimulus presentation. The disadvardgfthe use of cocktail blanks would be
a problem in interpretation of the results. During first feaamalysis no other stimulus condition
is introduced into the image stack. The creation of cocktiaihks, on the other hand, needs some
assumptions about what the complete set of stimuli for igon of the cortex is. It does also
pose some problems in how to present stimuli presumablyadictiy the whole analyzed cortex
area uniformly; often cocktail blanks are created by comamally combining the recordings for
several stimuli.

The experiments on the artificial and the optical imagin@dats indicated that the accelerated
gradient descent algorithm is noise robust and gives goparation results. Some discrepancies
between results for the artificial and the optical imagingadsets remain to be analyzed. The
advantage in stability of the Jacobi algorithm when comgbdoethe gradient descent method is
stronger for the Ol data set than for the artificial one. Aledhad performance of tlwer heuristic

is not finally clarified. The higher number of mixtures in thedata set could be an explanation;

but it could also be possible, that the assumptions abousdbheces not being correlated is not
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completely true for the Ol data set.

It still remains to apply the different methods to other de¢ts. One task would be to test the
applicability of the gradient descend algorithm to otheticg imaging experiments, e.g. Calcium
imaging or fMRI. Such experiments could confirm its usefagéor practical work. In addition,

artificial data sets with different autocorrelation sti#tis could help to explore the influence of
correlation structure and number of sources on optimalt sktf, as well as on noise robustness.

An important field for future research will be the developmehmethods for including prior
knowledge about sources and mixing process into Blind SoGeparation. One point is that
the mixing matrix has to be causal, i.e. the mapping signahcaibe mixed into images which
are recorded before the stimulus is presented. Further llkdge which could be useful are as-
sumptions about spatial and temporal patterns for diftesenrces. The mapping component is
relatively slow and lasts over some seconds. The patternedblibod vessels is also known very
well. Furthermore, the relative amplitudes of differergral types are known; depending on the
wavelength used for recording, the mapping signal corietita certain percentage of the total
signal (10-50% for different wavelengths for the deoxy- #melscattering signals).

In conclusion, the goal to improve the noise robustness istieg Blind Source Separation al-
gorithms has been achieved. The accelerated gradientrdesdgerithm gives separation results
superior or similar to those of the best evaluated existiggrahm, the Jacobi method with noise
robust sphering. Also, the results for the optical imagiatadset are often the best of the tested
algorithms. Only if speed and stability of the algorithm arere important than separation quality,
e.g. if visual inspection of results cannot be performeckad time environment, the Jacobi algo-
rithm is preferable. Concerning the extraction of stimutuaps from optical imaging data, the
ESD approach, presented in [SSBB] and improved here, gives yet the best separation results
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Appendix A

Derivations

A.1 Derivation of ESD Algorithm

A more detailed derivation of the standard ESD algorithnrm theovided in section 4.2 is given in
the following.

The unshifted cross-correlation matrix is calculated deviong from the given sensor signals
y(r) (B is short for the multiplication of the sphering matiix with the unknown mixing matrix
A; B =DA):

Cig(0) = (Yir)yjr)). (A1)
= <Z B;s(r) x ZBj,kSk(r)>
4 k

= > BiiBji\(0)
l

r

Here);(0) is the variance (auto-correlation of zero shift) of the seudr The last step is possible,
because by assumption the cross-correlations of the so(uge)s(r)), are zero forl # k. In
matrix notation this is

C(0) = AA(0)AT : with (A.2)
A1 (r) 0 0

Alr) = booew °
0 0 An:(r)

Similarly the formula for the shifted cross-correlationtrais obtained:

C(Ar) = AA(Ar)AT (A.3)
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These equations look similar to Eigensystem problems. ligyt &re not yet such systems, because
the mixing matrixA is in general not orthogonal and so its transpose is hot dquitd inverse.
Nevertheless by substituting one equation into the oth&igansystem can be built:

AT = C(Ar)AA(Ar) (A.4)
A(0) = A7'C(0)C7!(Ar)AA(Ar) (A.5)
C(0)C™'(Ar)A = AA(0)A"'(Ar) (A.6)

The productC(0)C!(Ar) is the matrix, of which the Eigensystem has to be computed.|Tst
formula is equation 4.12 in section 4.2.

A.2 Derivative of Cost Function

In section 4.4.2 the cost functidi(W) given in equation 4.25 is minimized by gradient descent.
The derivation of it is given in the following.To implement the restrictiofW 1), ; = 1 for all

i = 1,..., N, an auxiliary variable was introduce® = W~! — I, i.e. the main diagonal of
T is zero. In the followingA ; ;) denotes matriXA without its row: and columry. Af(“ ) is an
adjunct ofA,, i.e. the sub- determlnant of elemeti;, multiplied by (— 1)i*7). A sub-determinant

is the determinant oA\, with thesth row and thejth column removed. The derivative of the cost
function

—=>»> ((WC (AryWT) J)Q (A7)

Ar i#j

with respect tdI is given by (based on a derivation given in [LUb97]):

OFE

= A.8
9T, Zb: aWa,, a:rzy (A8)
OF

= 2222 ZWZ kW lel AI’) (Ag)
8Wa’b Ar 1 j#£i

(Z 0i,a0k s W, 1Cri(Ar) + 5j,a5l,bWi,ka,z(Ar))
Kl
= 233 > WakCha(Ar)Wi i WimChm(Ar) +
Ar i#a k,l,m
Wk Cri(AT)W; (Wi 0 Cry p (Ar)
MWap P -1 _ 4 e det (THT) b0
s = UL = (- i) (A.10)

In a direct comparison it turned out that a numerical diffiagion is much faster; consequently that was used in
the actual simulation runs.
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det (I+T) 52— det((T+T) (p,4)) —det((I+T) 4,0)) 57— det(I+T)

= (_1)a+b T,y T,y
det(I4+T) det(I4+T)
(—1)2F¥+atb det (I+T) (5,0 (2,5))
Al TR (L) —WyaWap 52 #bANy#a
~Wy2Wap ; otherwise

This used the derivative of determinants, which is giverelfarmprime;’, denotes the derivative):

A 0 Alm A1 A1,m
ddet(A) ; ; ; :
I ee— = det A;cl A;cm :det 0 Ai,jzl 0
0A; ; ; ; . .
A7.1,1 An-,m A;,l An.,m
RN
I
= (=1)""7 det(A ;) (A.11)

Only the derivative of one row (rov) is not equal to zero, which eliminates the first sum (because
the determinant of a matrix containing a row of zerag)isin that row only one element is unequal
to zero (47}, which is1), eliminating the second sum.
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