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Abstract—Modern multicore systems offer huge computing
potential. Exploiting large parallel systems is still a very challeng-
ing task, however, especially as many software developers still use
overly-sequential programming models. refactoring tool support
that allows the programmer to introduce and tune parallelism in
an easy and effective way, exploiting high-level parallel patterns
such as farms and pipelines. Using our approach, we achieve
speedups of up to 21 on a 24-core shared-memory system for a
number of realistic use-cases.

I. INTRODUCTION

Despite recent trends towards increasingly parallel multicore/-
manycore systems, software engineering practices are lagging
behind. Most current application designers and programmers
are not experts in writing parallel programs. Knowing where
and when to introduce parallel constructs can be a daunting
and seemingly ad-hoc process. As a result, parallelism is
often introduced using an abundance of low-level concurrency
primitives, such as explicit threading mechanisms and com-
munication, that typically do not scale well and can lead
to problems of deadlock, race conditions etc. Furthermore,
software engineering tasks such as porting to other parallel
platforms and general code maintenance can then require huge
efforts and often rely on good parallel systems expertise.

This paper exploits a structured parallel approach based on
combining parallel task farms with parallel/sequential pipelines
to form complex parallel programs, using a new refactoring-
based methodology. A sophisticated refactoring tool guides
programmers through the parallelisation process, suggesting
sensible parallelisations, and automatically inserting the ap-
propriate parallel code at each step. This significantly reduces
the difficulty of parallelisation, allowing the programmer to
focus on the logic of their application, rather than on complex
low-level issues. It also yields code that is more intuitive
and easier to maintain. Unlike fully-automatic approaches, the
programmer can exploit application knowledge and experience
to direct the parallelisation process, allowing transformations
cannot be absolutely shown to be safe, for example. This
paper applies our refactoring tool and approach to a number of
realistic use-cases in C++. We show that, using our methodol-
ogy, we are able to obtain good speedups on large multicore
platforms, with minimal work required from the programmer.
Specifically, the main research contributions of this paper are:

1) we introduce a number of novel parallel refactorings for
C++ using the FastFlow [1] skeleton library;
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2) we show how our refactorings can be used to tune
performance using nested skeleton configurations;

3) we demonstrate the applicability of our refactorings to a
number of realistic medium-scale use-cases; and,

4) we study the performance and scalability of the refactored
use-cases on a 24-core multicore machine.

While our results are given in terms of C++ and FastFlow, the
approach that we have taken here is completely generic, how-
ever, and can be exploited in many other language, parallelism
and communication settings, such as pThreads, OpenMP, MPI,
Python or Java. Provided the underlying primitives are suf-
ficiently rich, it is not necessary to exploit a pre-packaged
skeleton library or other structured parallel primitives.

A. Introducing Parallelism using Refactoring

Refactoring is the process of changing the structure of a
program, while preserving its functionality [19]. Unlike au-
tomatic program compilation and optimisation, refactoring
emphasises the software development cycle, principally by: i)
improving the design of software; ii) making software easier
to understand; and iii) encouraging code reuse. This leads
to increased productivity and programmability. This semi-
automatic approach is more general than fully automated
parallelisation techniques, which typically work only for a very
limited set of cases under specific conditions, and are not easily
tractable. Furthermore, unlike e.g. simple loop parallelisation,
refactoring is applicable to a wide range of possible parallel
structures, since parallelism is introduced in a structured way
through algorithmic skeletons.

Our parallel refactoring methodology is shown in Figure 1.
Here, the programmer starts with a sequential application,
without any introduced parallelism. The first step is to identify
where parallelism will be introduced; this step requires the
programmer to reason about the structure of the program.
However, it requires no expert knowledge on parallelisation, as
a relatively basic understanding of the program structure, com-
bined with information from performance/profiling statistics, is
sufficient to indicate potential parallel targets. The programmer
then identifies the unit(s) of work for the parallelism by
identifying and introducing component structures. Components
are introduced automatically by the refactoring tool, under
programmer guidance. The third step is to introduce the desired
skeletal structure for the parallelism, where the refactoring tool
also introduces the required code automatically. The result
is a new parallel program. The programmer is free to try
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Figure 1.
specific parallel patterns and their associated skeleton implementations.

different parallelisations of the application, retracing previous
refactoring steps if necessary. The process may be repeated,
using new performance information gained from executing the
refactored program, further honing the parallel performance.

B. Patterns and Skeletons

In our approach, parallelism is described in terms of high-level
parallel patterns. For this paper, we restrict ourselves to two
classical parallel patterns, which we consider to be among the
most useful and most common:

e The Farm (A) pattern is present in computations where
a single function, f, is applied to a set of inputs,
Z1,...,Tn,. Parallelism arises from applying the same
function to different inputs at the same time.

e The Pipeline (||) pattern models a parallel pipeline, where
a sequence of functions, fi, fs,..., fi, are applied, in
turn, to a sequence of independent inputs, x1, X2, ..., Tp.
The output of f; becomes the input to f; 1, so that
parallelism arises from executing f;(xy) in parallel with

fir1(fi(zg—1))-

The actual implementation of these parallel patterns is ex-
pressed in terms of algorithmic skeletons [10], [11], abstract
parallel code templates that are instantiated with application
code and other key information to give concrete parallel
programs. Skeletons abstract away low-level complexities such
as thread creation, communication, synchronisation, and load
balancing. In this paper, we use the FastFlow [1] skeleton
library for C++.

II. REFACTORING C++ TO INTRODUCE PARALLELISM

This section discusses three refactoring examples to introduce
computationally intensive parallel components, task farms, and
parallel pipelines, respectively.

A. Introduce Component Refactoring

This refactoring allows the programmer to identify a compu-
tationally intensive entity (a parallel “component”) that can
subsequently be encapsulated as part of a parallel computation,
e.g. as a worker in a farm or pipeline. The refactoring intro-
duces an instance of a Component class', encapsulating the

A subclass of Fastflow’s base ff_node code.

The Parallel Refactoring Methodology, starting from an initially sequential program, and using performance information to guide the introduction of

selected computational entity hygienically (i.e. the component
is free from external side-effects). Step 1 of Figure 2 shows
an example of using the Introduce Component refactoring on
the sequential convolution code from Algorithm 1. In this
example, the programmer has introduced two components. The
refactoring is first applied to the generate method, producing a
Component declaration, genStage. The call to generate is then
replaced by a call to genStage.callWorker, with the appropriate
parameters. The process is repeated for the filter method,
producing the filterStage component.

B. Introduce Farm Refactoring
The Introduce Farm refactoring has two variants:

e [ntroduce Farm (Declaration): This refactoring introduces
a new FastFlow farm declaration. A Component instance
is chosen to be used as the worker function for the
farm. An example is shown in Step 3 of Figure 2, where
the refactoring has introduced a new farm declaration,
gen_farm, using the gen_stage component from Step 2.
The nworkers parameter (the number of farm workers)
must either be previously defined or else be given as
an argument to the refactoring. A similar refactoring is
applied in Step 4 to give the filter_farm declaration.

e Instantiate Farm (Instantiation): The second variant in-
stantiates a previously-defined farm. Step 3 instantiates
one of the pipeline stages using the newly created
gen_farm. All other stages in the Pipeline are preserved.

C. Introduce Pipeline Refactoring
Our final refactoring similarly has two variants:

e [ntroduce Pipeline (Declaration): This refactoring inserts
a new FastFlow pipeline declaration, analogously to in-
troducing a farm declaration. This is shown in Step 2.

e [nstantiate Pipeline (Instantiation): For this refactoring,
the programmer must select a C++ for loop. Step 2 shows
the result after refactoring. Here, the original for loop has
been refactored into a three-stage pipeline, pipe, where
the first stage is a StreamGen stage. This is a C++ class
instance that models the streaming input to the pipeline.
The refactoring is not limited to only C style arrays:
C++ STL data structures, such as std:vector< > objects,



I Component<ff_im> genStage (generate) ;

I Component<ff_im> filterStage (filter);
| for(int i = 0; i<NIMGS; i++) {

I rl = genStage.callWorker (

1 new ff_ im(images[i]));

I results[i] = filterStage.callWorker (
1 new ff im(rl));

1

ff farm<> gen_farm;

gen_farm.add collector (NULL);

std::vector<ff node*> gw;

for (int i=0; i<nworkers; i++)
gw.push_back (new gen_stage);

gen_farm.add_workers (gw) ;

TT farm<> filter farm;
filter farm.add collector (NULL);
std::vector<ff node*> gw2;

filter farm2.add_workers (gw2);

StreamGen streamgen (NIMGS, images) ;
ff pipeline pipe;
pipe.add stage (&streamgen) ;
pipe.add_stage (&gen_farm) ;

pipe.add_stage (&filter_ farm) ;
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Step 2: Introduce Pipeline
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pipe.run_and wait_end();

ff farm<> gen_ farm;

gen_farm.add_collector (NULL) ;

std::vector<ff node*> gw;

for (int i=0; i<nworkers; i++)
gw.push_back (new gen_stage) ;

gen_farm.add workers (gw) ;

StreamGen streamgen (NIMGS, images) ;
pipe.add_stage (&streamgen) ;

pipe.add_stage i

pipe.add_stage (new filterStage);
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Step 3: Introduce Farm

Figure 2. Refactoring the Image Convolution Algorithm (Algorithm 1), first introducing parallel components (Step 1), then introducing a parallel pipeline (Step

2), before adding two levels of farm (Steps 3 and 4).

for example, may also be considered The second stage, a
function, genStage, is added as a pipeline stage; the third
stage, filterStage, is added as the final stage. Finally, the
pipeline waits for the result of the computation, using a
run_and_wait_end() method call. Any dependencies be-
tween the output of genStage and the input of filterStage
are detected automatically.

Every refactoring that introduces new code has a correspond-
ing inverse: for example, Farm Elimination inverts Introduce
Farm; and Pipeline Elimination inverts Introduce Pipeline.
This allows any combination of rules to be inverted (undone).
The refactorings are also fully nest-able, allowing, for example,
a farm, such as A(f1o f2) (a task farm, A, where the worker
is a function composition, o, of two components, f1 and f2), to
be refactored into A(f1 || f2) (transforming the composition
into a parallel pipeline, ||). In this way farms and pipelines
may be formed and reformed in any way that is necessary for
the parallel application.

Our refactoring prototype® is implemented in Eclipse,
under the CDT plugin. The programmer is presented with
a menu of possible refactorings to apply. The decision to
apply a refactoring and introduce a skeleton is made by the
programmer. Once a decision has been made, all required code-
transformations are performed automatically. We therefore rely
on the programmer to make informed decisions, and can
exploit any knowledge/expertise that they may have, but do
not require him/her to have deep expertise with parallelism.

IIT. USE CASES

In this section we illustrate the use of the refactorings above
on a set of medium-scale realistic benchmarks. For each use

2 Available at: http://www.cs.st-andrews.ac.uk/~chrisb/refactorer.zip

F S

Algorithm 1 Sequential Convolution Before Component In-
troduction
for(inti = 0; i<NIMGS; i++) {

r1 = generate(new ff_image(imagesli]));

results[i] = filter (new ff_image(r1));

case, we start with the original sequential implementation in
C++, and apply the refactorings from Section II in order
to obtain an optimised parallel version. The refactoring pro-
cess demonstrated here relies on programmer knowledge to
know when and where to apply the refactorings, based on
profiling information and knowledge about the patterns from
Section I-B, and following the methodology of Section I-A. In
order to properly evaluate our refactoring tool, parallelisation
was performed twice for each use-case: once using the refac-
toring tool and once on a purely manual basis. The refactoring-
based parallelisation will be discussed in detail below. In
all cases, Both versions give almost identical performance.
However, the development time using refactoring was much
faster, giving a clear and significant advantage of nearly one
order of magnitude over the manual implementation.

A. Image Convolution

Image convolution is a technique widely used in image pro-
cessing applications such as blurring, smoothing and edge
detection. The sequential structure (Figure 2, Step 1), consists
of two stages. The first stage, genStage, reads an image from
a file, while the second stage, filterStage, applies a filter to
each image. The convolution process is typically applied to a
stream of images. Computationally, the filtering stage requires
a scalar product of the filter weights with the input pixels



within a window surrounding each of the output pixels:

output_pizel(i,j) = Z Z input_pizel(i —n,j —m)X

filter_weight(n,m) (1)

Step 1: Introduce Components. The refactoring process pro-
ceeds in a number of steps. The first step is to identify the
components required as worker stages of the skeletons to be
introduced. In order to do this, the programmer first selects
the generate function call on Line 2 of Algorithm 1, and uses
the Introduce Component refactoring. The result of this is a
component declaration, genStage together with a call to the
method callWorker, as shown in Figure 2. The programmer
repeats this step for the filter function call in Algorithm 1.
The names for the components are given as a parameter to
the refactoring tool before the refactoring is performed. The
refactoring tool automatically checks for conflicts in scope.

Step 2: Adding a Pipeline. The second step is to add a Pipeline
skeleton and identify that genStage and filterStage are the two
stages of the pipeline. First, a new pipeline declaration, pipe,
is introduced, using the Introduce Pipeline refactoring. The
location of the new pipeline declaration is defined by the cursor
position in the Eclipse IDE. In this example, the programmer
chooses to introduce the new declaration just before the for
loop. The next step is to add the two stages to the pipeline,
by selecting the for loop, using the Introduce Pipeline Stages
refactoring. The refactoring automatically checks the body
of the for loop for Component instances, replacing calls to
callWorker with pipe.addStage. In addition, the refactoring
tool also automatically adds a preliminary streaming stage,
streamgen, which acts as a stage that streams images to the
genStage pipeline stage. This is determined as being the first
argument to genStage before the refactoring took place. The
refactored code is shown in Figure 2, Step 2.

Step 3: Farming the Pipeline Stages. The next step in the
refactoring process is to farm the two pipeline stages. First,
the programmer declares a new farm declaration, gen_farm (the
name of the farm is programmer-defined) using the Introduce
Farm refactoring. Then, the programmer selects the expression
new genStage as the farm worker, and performs the Instantiate
Farm refactoring. The refactoring tool then automatically adds
the new worker to the gen_farm farm. The refactored code
is shown in Figure 2, Step 3. Finally, the second stage of
the pipeline is also farmed. Again, a new farm declaration is
introduced, filter_farm, the expression new filterStage (second
stage of the pipeline) is selected and the Instantiate Farm
refactoring is performed. The result is shown in Figure 2,
Step 4, where the filter_farm declaration adds the filterStage
component as its worker. Additionally the farm is also added
as the final stage of the pipeline.

B. Ant Colony Optimisation

Ant Colony Optimisation (ACO) [3] is a heuristic for solving
NP-complete optimisation problems, inspired by the behaviour
of ants living in real ant colonies. In each iteration of ACO
alogrithm, each ant independently computes a solution to
the problem, with the solution being partially guided by a
pheromone trail. To compute one component of a solution, an
ant (with probability ¢) follows the pheromone trail for that
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Algorithm 2 Sequential Ant Colony

for (j=0; j<num_iter; j++) {
for (i =0; i<num_ants; i++)
cost[i] = solve(new ff_task_t(num_jobs, i,

&(results[ixnum_jobs]), process_time, weight,
deadline, tau));

best_t = pick_best(num_ants, num_jobs, cost,

results, &best_result);
update(num_jobs, best_t, best_result, tau);

}

component or (with probability 1 — ¢) it performs a biased
random selection of the component. In this way, different ants
produce different (but similar) solutions. When all ants are
done, the best solution is chosen and the pheromone trail is
updated according to that solution and the next iteration starts.

In this paper, we consider Single Machine Total Weighted
Tardiness Problem (SMTWTP) as an optimisation problem to
which we apply ACO. We are given n jobs, where each job
1 is characterised by its processing time, p;, deadline, d;, and
weight, w;. The goal is to schedule execution of jobs in a
way that achieves minimal total weighted fardiness, where
the tardiness of a job is defined by 77 = max{0,C; — d;},
where C; is the completion time of the job ¢, and the total
tardiness of the schedule is defined as > w;T;. In the ACO
solution to the SMTWTP problem, in each iteration each ant
independently computes a schedule. The pheromone trail that
guides the schedules is defined by matrix 7, where 7[i, 5] is the
preference of assigning job j to the i-th place in the schedule.

C++ Implementation: Algorithm 2 shows the extract of the
sequential code for the SMTWTP instance of the ACO class of
algorithms, written in C++. The most relevant code for refac-
toring and parallelisation is the iteration loop, where in each
iteration every ant computes a solution, the best solution is
chosen and the pheromone trail is updated. The solve function
produces a solution based on the arrays of processing times,
deadlines and weights of jobs and the pheromone trail. The
pick_best function picks the best solution and update updates
the pheromone trail, tau. The potential for parallelisation lies
in the fact that each ant can compute its solution completely
independently. The remaining two phases of each iteration,
i.e. picking the best solution and updating the pheromone
trail, are relatively cheap and inherently sequential. Therefore,
parallelising the ACO involves introducing a farm, where each
worker computes the solution for one ant.

Step 1: Identifying Components. The first step in the refactor-
ing process is to identify the component that will be used as
the worker in the farm. In the our example from Algorithm 2,
we identify the function call to solve as a worker function, and
introduce a Component instance, called WorkerComponent,
using the Introduce Component refactoring.

Step 2: Adding a Farm. The next step is to introduce a new
farm declaration, using the Introduce Farm refactoring. This
new declaration is added just before the for loop at Line 1, so
that it can be used within the for loop body.

Step 3: Adding Tasks to the Farm. The final step is to add the
tasks to the farm, using the Instantiate Farm refactoring. For
this, the for loop is selected, enabling the refactoring to replace
calls to the callWorker function with farm.offload, passing the



Algorithm 3 Ant Colony Refactored for Parallelisation

Algorithm 4 Sequential Molecular Dynamics (MD)
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results, &best_result);
update(num_jobs, best_t, best_result, tau);

}

actual callWorker parameter to offload instead. The code after
refactoring is shown in Algorithm 3.

C. Molecular Dynamics

Molecular Dynamics (MD) simulates the behaviour of a sys-
tem on the atomic scale [2]. Interactions between molecules
are evaluated explicitly and Newton’s equations of motion are
numerically integrated over time, leading to an extreme spatial
and temporal resolution. However, this leads to significant
computational costs and hampers the adoption of MD as the
method of choice in more complex real-world applications.
With the rise of HPC computing, circumstances are changing.
MD is used routinely in more and more cutting-edge tech-
nologies and research. This requires MD codes to be highly
parallel, thus a lot of effort has been put into porting and
developing new, hardware-specific codes. For research on MD
from a HPC point of view, a highly modular code is being
developed in pure C, CMD. The goal is to have a single code
featuring multiple widely used data structures and all wide-
spread parallelisation methods.

CMD features two distinct data structures. BasicN2, used
for small to medium sized systems where all intermolecular
distances are evaluated in order to identify interaction partners,
and MoleculeBlocks. There, all molecules are sorted into
cells, reducing the search for interaction partners to O(N) and
therefore used for large systems (also called linked cell). In
this paper we consider the BasicN2 variant for refactoring.
Profiles of the BasicN2 use case show that the force calculation
routine dominates the simulation time (e.g. 99.91% for 68,000
molecules). Therefore, only the force calculation routine needs
to be parallelised.

Step 1: Identifying Components. Algorithm 4 shows the sim-
plified code of the sequential version of the force calculation
routine. The first step is to identify the worker components,
by selecting the function call to calc_forces_real and choosing
the Identify Component refactoring. Likewise, the programmer
performs this refactoring for the calc_forces_halo function.

Step 2: Introducing a Farm Declaration. The next step in the
refactoring process is to introduce a new farm declaration.

void basicN2_calc_forces(void xcontainer, real «U_pot) {

basicN2 «task = (basicN2 x) container;

longi, j;

real U_pot_tmp =0.;

for(i =0;i < config.num_threads; i++)
calc_forces_real(task);

xU_pot /= (2 x 6.0);

for(i =0;i < config.num_threads; i++)
calc_forces_halo(task);

Algorithm 5 MD Refactored for Parallelisation

basicN2 «task = (basicN2 ) container;
long i, j;

7777777
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Component declarations from the previous step need to be
lifted to the main function (to re-use the same farm in multiple
simulation iterations). Currently, this step must be performed
manually by the programmer, however, this could easily be im-
plemented as a refactoring. Once the Component declarations
are lifted to the main function, the programmer can select the
first Component declaration and choose the Introduce Farm
refactoring. The name of the introduced farm is chosen as
farm1 and the number of workers N is specified. This process
is repeated for the halo routines, by selecting the second worker
declaration haloWorker and introducing a second farm, farm2.

Step 3: Adding Tasks to the Task Farm. The final refactoring
step is to add tasks to the two new farms that were introduced
in the previous step. In order to do this, the new farm
declarations, farm1 and farm2 must be passed as parameters to
the basicN2_calc_forces function. This is currently a manually
performed step (it could be implemented as refactoring). Once
the farms are added as function parameters, the program-
mer first identifies farm1 and selects the first for loop (at
line 6 in Algorithm 4) and chooses the Instantiate Farm
refactoring. This refactoring replaces the Component method
call to callWorker with farm1.offload, using the parameters to
callWorker as parameters to the offload function. This process
is then repeated for farm2 and the second for loop at Line 9.
Algorithm 5 shows the result of the refactoring process

D. Graphical Lasso

In Machine Learning, there is often the need to determine a
dependency structure graph between features in a data set. The
Graphical Lasso [13] allows us to do this, based on the data
correlation matrix, but eliminating correlation between features
where this is introduced indirectly because of intermediate
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Algorithm 6 Sequential Graphical Lasso

Algorithm 7 Graphical Lasso Refactored for Parallelisation

typedef MatT arma::mat;
void t_gelnet_ff(const MatT& S, double lambda, MatT& C,
MatT& P, ...) {
arma::uword p = S.n_cols; // problem size: #variables
std::vector< std::vector< arma::uword > > components;
connected_components( S, L, components );
arma::uvec block;
arma::uword bi, j;
for( arma::uword ¢c=0; ¢ < components.size(); c++ ) {
block = arma::sort( arma::conv_to< arma::uvec >::
from( components[c] ) );
C( block, block ) = S( block, block );
for( bi=0; bi < block.n_elem; bi++ ) {
j = block(bi);
C(j,j) =S(,j) +lambda;

if ( block.n_elem > 1) {
t_precision2weights( P, block );
gelnet_inverse( S, lambda, block, C, P, ... );
t_weights2precision( P, C, block );

} else {
j = block(0);
P(,j) =1.0/ C(j.j);

features. Common implementations use iterative coordinate
descent optimisation to perform the involved matrix inversion.
If the expected graph structure is sparse, this optimisation
is usually combined with a lasso regularisation, by which
sparse graph structures are favoured. Additionally, for real
data, the correlation matrix often factorizes into blocks where
features between different blocks have no correlation above
the value used for the lasso regularisation. In this case, the
optimisation process on these blocks becomes independent,
and inversion of such blocks can be performed independently
and in parallel. We first parallelised this algorithm manually,
using the FastFlow library. When the refactoring tool became
available, we produced a second version. The relevant part
of the sequential implementation is given in Algorithm 6 in
simplified form. After determining a factorizing block structure
(connected components, Line 6) of the matrix to work on, S,
a for loop (Line 9) iterates over all components, and prepares
variables for a following call of gelnet_inverse() (Line 19),
which implements the coordinate descent.

Step 1: Preparation for refactoring. The code as shown in
Algorithm 6 does not yet fulfil the preconditions for component
identification and farm introduction refactorings. To enable
this, some local variable declarations (Lines 7-8) are moved
into the loop body, the loop body is extracted as a new function
(t_gelnet_ff_for_component; Eclipse CDT supports this via an
existing sequential refactoring), and the arguments of the new
function are extracted into a task structure (Algorithm 7, Lines
1-11; this has to be done manually as there is currently no
appropriate refactoring).

Step 2: Identifying Components. Next, the Identify Component
refactoring is applied, introducing the component wrapper
t_gelnet_ff_worker as described in Section II-A.

Step 3: Introducing a Farm Declaration. In the next step,
refactoring is used to introduce the farm declaration before

1
2
3
4
5
6
7
8
9

struct t_gelnet_ff_task {

t_gelnet_ff_task(const MatT& _S, double _lambda,
MatT& C, MatT& _P, std::vector<arma::uword>
_component, ...): S(_S), lambda(_lambda),
C(_C), P(_P), component(_component), ... {};

const MatT& S;

double L;

MatT& C;

MatT& P;

std::vector<arma::uword> component;

b
void t_gelnet_ff(const MatT& S, double lambda, MatT& C,
MatT& P, ...) {
arma::uword p = S.n_cols; // problem size: #variables
std::vector<std::vector<arma::uword>> components;

farm.add_workers(workers);,

farm.run_then_freeze();

the for loop (Algorithm 7, Lines 17-23), here with nworkers
workers specified. In this step, the farm is also filled with
the workers of the component t_gelnet_ff_worker introduced
during the preceding step.

Step 4: Adding Tasks to the Task Farm. Finally, the whole for-
loop is marked, and refactoring is used to replace the compo-
nent call in the for loop by farm offloading of the tasks (Al-
gorithm 7, Lines 24-26). The final refactored code is given in
Algorithm 7, excluding the function t_gelnet_ff_for_component
introduced in the step ‘“Preparation for refactoring” (which
just contains the former loop body including the moved local
variable declarations), and the standard component wrapper
introduced by refactoring, t_gelnet_ff_worker.

IV. BENCHMARK RESULTS

All measurements have been made on a dual 2.3GHz 12-core
AMD Opteron 6176 architecture, running Centos Linux 2.6.18-
274.el5, and averaged over 5 runs. Figure 3 shows speedup
results for each of the use cases. The results for the convolution
of 500, 1024*1024 images, is shown in the left side of the
figure. The convolution is defined as a two stage pipeline (|),
with the first stage being a farm (A) that generates the images
(G), and the second stage is a farm that filters the images (F').
In the convolution, the maximum speedup obtained from the
refactored version is 6.59 with 2 workers in the first farm and
8 workers in the second farm. There are also three workers
for each pipeline stage, (two for the farm stages, and one for
the initial streaming stage), plus threads for the load balancers
in the farm, giving a total of 15 threads. Here, the nature of
the application may limit the scalability. The second stage of



the pipeline dominates the computation: the first stage takes
on average 0.6 seconds and the second stage takes around
7 seconds to process one image, resulting in a substantial
bottleneck in the second stage.

The ant colony optimisation was executed with 2000 jobs
and with 3000 ants (each ant corresponds to one task). We can
observe a linear speedup up to 7.29 using 8 farm workers, after
which the performance starts to drop noticeably. We observe
only relatively modest speedups (between 3 and 4) with more
than 12 farm workers. The Ant Colony Optimisation is quite a
memory-intense application, and all of the farm workers need
to access a large amount of shared data (processing times,
deadlines and weights of jobs, together with 7 matrix), espe-
cially since we are considering instances where the number of
jobs to be scheduled is large. Since the architecture on which
we have tested is NUMA, the drop in performance is due
to expensive memory accesses for those farm workers that
are placed on remote cores (i.e., not in the same processor
package). The fact that the decrease in performance occurs at
about 10 farm workers confirms this: this is exactly the point
where not all of the farm workers can be placed on cores from
one package’.

For the BasicN2 use case (shown in Listing 3 in the right
column), the refactored version achieves a speedup of 21.2
with 24 threads. The application scales well, with near linear
speedups (up to 11.15 with 12 threads). After 12 threads, the
speedups decrease slightly, most likely because the refactored
code dynamically allocates memory for the tasks during the
computation, resulting in some small overhead. FastFlow also
reserves two workers: for the load balancer and the farm
skeleton, so the maximum speedup achievable with 24 threads
is only 21.2. BasicN2 gives scalable speedups due to its data-
parallel structure, where each task is independent, and the
main computation over each task dominates the computation.
In Listing 3, we also show the manually parallelised version
in FastFlow, which achieves comparable speedups of 22.68
with 24 threads. The manual refactored code achieves slightly
better speedups due to the fact that only one FastFlow farm
is introduced in the code. However, in the refactored version,
due to the tool’s limitation, we introduce two FastFlow farms
with an additional barrier point between them. The refactoring
tool does not yet have provision to merge two routines, which
can be achieved by an experienced C++ programmer.

The Graphical Lasso use case gives a scalable speedup of
9.8, for 16 cores, and stagnates afterwards. This is similar
to manually ported FastFlow code, and to results obtained
with OpenMP (which achieved a maximum speedup of 11.3
on 16 cores). Although the tasks parallelised here are, in
principle, independent, we expected significant deviation from
linear scaling for higher numbers of cores, because of cache
synchronisation (disjunct but interleaving memory regions are
updated in the tasks), and an uneven size combined with a
limited number of tasks (48). At the end of the computation,
some cores will wait for the completion of remaining tasks.
The observed performance matched our expectations, provid-
ing considerable speedup with a small investment in manual
code changes.

Table I shows approximate porting metrics for each use
case, with the time taken to implement the manual parallel

3FastFlow reserves some cores for load balancing, the farm emitter/collector.

Table 1. APPROXIMATE IMPLEMENTATION TIME, MANUAL VS.

REFACTORING
[ [ Man.Time | Refac. Time | LOC Intro. ]
Convolution | 3 days 3 hours 58
Ant Colony | 1 day 1 hour 32
BasicN2 | 5 days 5 hours 40
Graphical Lasso | 15 hours 2 hours 53

FastFlow implementation by an expert, the time to parallelise
the sequential version using the refactoring tool, and the
lines of code introduced by the refactoring tool. Clearly the
refactoring tool gives an enormous saving in effort over the
manual implementation of the FastFlow code.

V. RELATED WORK

Refactoring has a long history, with early work in the field
being described by Partsch and Steinbruggen in 1983 [16], and
Mens and Tourwé producing a survey of refactoring tools and
techniques in 2004 [15]. The first refactoring tool system was
the fold/unfold system of Burstall and Darlington [9] which
was intended to transform recursively defined functions. There
has so far been only a limited amount of work on refactoring
for parallelism [17]. We have previously [18] used Template
Haskell [20] with explicit cost models to derive automatic
farm skeletons for Eden [14]. Unlike the approach presented
here, Template-Haskell is compile-time, meaning that the
programmer cannot continue to develop and maintain his/her
program after the skeleton derivation has taken place. In [4],
we introduced a parallel refactoring methodology for Erlang
programs, demonstrating a refactoring tool that introduces and
tunes parallelism for Skeletons in Erlang. Unlike the work
presented here, the technique is limited to Erlang is demon-
strated on a small and limited set of examples, and we did
not evaluate reductions in development time. Other work on
parallel refactoring has mostly considered loop parallelisation
in Fortran [22] and Java [12]. However, these approaches are
limited to concrete and fairly simple structural changes (such
as loop unrolling) rather than applying high-level pattern-based
rewrites as we have described here. We have recently extended
HaRe, the Haskell refactorer [6], to deal with a limited
number of parallel refactorings [7]. This work allows Haskell
programmers to introduce data and task parallelism using small
structural refactoring steps. However, it does not use pattern-
based rewriting or cost-based direction, as discussed here. A
preliminary proposal for a language-independent refactoring
tool was presented in [5], for assisting programmers with in-
troducing and tuning parallelism. However, that work focused
on building a refactoring tool supporting multiple languages
and paradigms, rather than on refactorings that introduce and
tune parallelism using algorithm skeletons, as in this paper.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a novel refactoring approach for
parallelising medium-scale realistic use-cases in C++, using
FastFlow skeletons. The refactoring approach to parallelisation
has demonstrated that easy and scalable speedups are achiev-
able (in one case, up to 21 on a 24-core machine) with a
massively reduced programmer workload. Based on readily
available and easy to use profiling tools, the programmer
identifies the most computationally intensive parts of his/her
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Figure 3. Refactored Use Case Results in FastFlow

code and simply points the refactoring tool towards them. The
actual parallelisation is then performed by the refactoring tool,
supervised by the programmer. This can give significant sav-
ings in effort, of about one order of magnitude. This is achieved
without major performance losses: as desired, the speedups
achieved with the refactoring tool are approximately the same
as for full-scale manual implementations by an expert. In
future we expect to develop this work in a number of new
directions, including adding advanced performance models to
the refactoring process, thus allowing the user to accurately
predict the parallel performance from applying a particular
refactoring with a specified number of threads. This may be
particularly useful when porting the applications to different
architectures, including adding refactoring support for GPU
programming in OpenCl. Also, once sufficient automisation
of the refactoring tool is achieved, the best parametrisation
regarding parallel efficiency can be determined via optimisa-
tion, further facilitating this approach. In addition, we also
plan to implement more skeletons, particularly in the field of
computer alegbra and physics, and demonstrate the refactoring
approach with these new skeletons on a wide range of realistic
applications. This will add to the evidence that our approach is
general, usable and scalable. Finally, we intend to investigate
the limits of scalability that we have obvserved for some of our
use-cases, aiming to determine whether the limits are hardware
artefacts or algorithmic.
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