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Abstract
This paper describes a new transfer learning method for modeling sensor time series followingmultiple different distributions,
e.g. originating frommultiple different tool settings. The method aims at removing distribution specific information before the
modeling of the individual time series takes place. This is done bymapping the data to a new space such that the representations
of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical
dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to
significantly improve the performance of regression models on time series following previously unseen distributions.
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Introduction

Standardmachine learning techniques rely on the assumption
that the entire data, both for training and for testing, follows
the same distribution. However, this assumption can be vio-
lated. In particular, in cyclical manufacturing processes, data
is often collected from different operating conditions and
environments—called scenarios.

One example is the drilling of steel components (Pena
et al. 2005; Ferreiro et al. 2012) where different machine
settings can lead to different torque curves during time.A sec-
ond example is the regression of spectroscopicmeasurements
where different instrumental responses, environmental con-
ditions, or sample matrices can lead to different training and
testmeasurements (Nikzad-Langerodi et al. 2018;Malli et al.
2017). Other examples can be found in the optical inspection
of textures or surfaces (Malaca et al. 2016; Stübl et al. 2012;
Zăvoianu et al. 2017), where different lightening conditions
and texture classes can lead to variations in measurements.

Approaching such heterogeneities in data by standard
machine learning techniques requires to model each scenario
independently which often causes expensive and time con-
suming data collection efforts. To overcome this problem,
approaches from thefield ofTransfer Learning (Pan andYang
2010) have been proposed. Transfer learning aims at extract-
ing knowledge from source scenarios (with large amounts of
possibly labeled data) and applies it to the modeling of target
scenarios (with little or no available data).

In this paper we address the problem of domain general-
ization (Muandet et al. 2013), where, assuming enough data
from a representative set of (source) scenarios, no data at
all is required for the generalization to previously unknown
(target) scenarios. We aim at predicting time series from
target scenarios arising in cyclical process problems inmanu-
facturing, e.g. torque curves.

We propose a new transfer learning method called
Scenario-Invariant Time Series Mapping (ScITSM) that
leverages available information in multiple similar scenarios
and applies it to the prediction of previously unseen scenarios
(without available training data).

ScITSM does so by mapping the data in a new space
where the scenario-specific data distributions are aligned and
such that subsequent jointmodeling of thewhole transformed
data samples is possible. The proposed method is based on
the idea of the parameter-based multi-task learning approach
presented in Zhang and Yang (2017), where coefficients of
neighboring models are either shared or forced to be similar.
Our method differs from the approach in Zhang and Yang
(2017) by the incorporation of expert knowledge and by its
application to time series data. The corrected data from dif-
ferent scenarios is more homogeneous and easier to learn by
subsequent machine learning tasks. Furthermore, the learned
correction formulas generalize to unseen scenarios. To the

best of our knowledge no comparable methods exist that
were specifically designed for time series data. The ScITSM
method is illustrated in Fig. 1.

The performance of the new algorithm is demonstrated by
experiments on a real-world intelligent manufacturing prob-
lem. Details of the application must be kept confidential, so
it is introduced here in an abstracted way. In particular, a
schematic sketch of the application is shown in Fig. 1, the
results of the experiments are presented and parts of the col-
lected and preprocessed data are shown. The results indicate
that prediction accuracy can be significantly improved by
ScITSM.

This paper is organized as follows: Sect. 2 reviews
related work, Sect. 3 formulates the problem of domain
generalization, Sect. 4 describes the proposed method for
Scenario-Invariant Domain Generalization and details our
algorithm,Sect. 5 describes our industrial use case, our exper-
iments and results, and, Sect. 6 concludes the work.

Related work

Transfer learning techniques are commonly applied in the
areas of computer vision, natural language processing, biol-
ogy, finance, businessmanagement and control application—
see e.g. Lu et al. (2015), Grubinger et al. (2016, 2017b),
Zellinger et al. (2016, 2017) and references within. Pub-
lished work in manufacturing applications are relative scare.
Successful application in chemistry-oriented manufacturing
processes with the usage of chemometric modeling tech-
niques are presented in Nikzad-Langerodi et al. (2018),
Malli et al. (2017). Another successful application of transfer
learning in intelligent manufacturing for improving product
quality was presented in Luis et al. (2010).

The presented method corresponds to the transfer learn-
ing subtask of domain generalization (Muandet et al. 2013),
which in contrast to other popular transfer learning sub-
tasks like domain adaptation (Zellinger et al. 2017, 2019)
does not require any process data measurements of the target
scenarios. Many existing domain generalization algorithms
can be found in the area of kernel methods (Muandet et al.
2013; Grubinger et al. 2015, 2017a, b; Blanchard et al. 2017;
Deshmukh et al. 2017; Gan et al. 2016; Erfani et al. 2016).
These algorithms first map the source scenarios in a high
dimensional kernel Hilbert space where the different data
distributions are aligned and subsequently train a predic-
tion model. Neural network based domain generalization
approaches were presented Ghifary et al. (2015), Li et al.
(2017a, b). Domain generalization was also combined with
SVM (Niu et al. 2015; Xu et al. 2014) and DC-programming
(Hoffman et al. 2017).
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Fig. 1 Schematic sketch of ScITSM for two-source transfer learning
with one feature x and targetΔy. Left column: Differently parametrized
tools acting with feature x on a workpiece causing target feature y. Four
basic training steps are performed: (a) Collection of training data from
source scenarios (representing tools parametrized by 30 and 50); (b) pre-
processing, e.g. analytic modeling, normalization and subsampling; (c)
ScITSM for aligning source data distributions (lines in the right col-

umn) based on parametric scenario-dependent corrected and smoothed
mean curves (dashed lines); (d) training of a single machine learning
model based on the aligned data of all source scenarios. The prediction
for an unseen target scenario (parametrized by 40) is based on three
steps: (a) Collection of target scenario data; (b) application of ScITSM;
(c) prediction of Δy using the trained machine learning model

To the best of our knowledge there is no domain gener-
alization method that accounts for multiple source domains
and temporal information in time series data.

Formal problem statement

For simplicity, we formulate the problem of multi-source
domain generalization for time series of equal length T . Such
time series are obtained as results of subsampling procedures
as it is the case in our application in Sect. 5.

Following Muandet et al. (2013), Ben-David et al. (2010)
and Zellinger et al. (2019), we consider distributions P1,
. . . , PS and Q over the input space R

N×T which repre-
sent S source scenarios and one target scenario, respectively,
where N represents the number of features. In this work, we
assume for each of the S+1 scenarios a given corresponding
parameter vectors p1, . . . ,pS,pQ ∈ R

P , e.g. correspond-
ing tool dimensions or material properties. Note that the
parameter vectors are not the parameters of the distributions
P1, . . . , Pn, Q.

Following Sugiyama and Kawanabe (2012), Ben-David
and Urner (2014), we consider an unknown target function
l : RN×T → R

T .
Given S source samples X1, . . . , XS drawn from P1, . . . ,

PS with corresponding target values Y1 = l(X1), . . . ,YS =
l(XS) and parameters p1, . . . ,pS , respectively, the goal
of domain generalization is to learn a regression model

f : RN×T → R
T with a small error

EQ[‖ f − l‖] =
∫
RN×T

‖ f (x) − l(x)‖ dx (1)

in the target scenario, where ‖x‖ is the Euclidean norm of
the vector x. Note that, except for the parameter vector pQ ,
no information is given about data in the target scenario.

Scenario-invariant time series mapping

The aim of the proposed ScITSM method is to remove the
scenario specific differences in heterogeneous cyclical pro-
cessmanufacturing data such that the transformeddata can be
jointly modeled by subsequent machine learning procedures.
In principle any regression model that accepts time-series
data as input can subsequently be employed, e.g. recurrent
neural networks or standardmachine learningmethods based
on features contracted from expert knowledge. From our
experience, the former usually is the first choice for com-
plex application with very large amounts of available data,
while the latter is particularly useful if only a limited amount
of data is available.

Theoretical motivation

Intuitively the error in Eq. (1) cannot be small if the target
scenario is too different from the source scenarios. However,
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if the data distributions of the scenarios are similar, this error
can be small as shown by the following theorem (obtained as
extension of (Ben-David et al. 2010, Theorem 1) to multiple
sources and time series).

Theorem 1 Consider some distributions P1, . . . , PS and Q
on the input space RN×T and a target function l : RN×T →
[0, 1]T . Then the following holds for all regression models
f : RN×T → [0, 1]T :

EQ[‖ f − l‖] ≤ 1

S

S∑
i=1

EPi [‖ f − l‖] + 2
√
T

S

S∑
k=1

d(Pi , Q)

(2)

where

d(P, Q) = sup
B∈B

|P(B) − Q(B)| (3)

is the total variation distance with Borel σ -algebra B.
Proof See “Appendix”. ��

Theorem1 shows that the error in the target scenario canbe
expected to be small if the mean over all errors in the source
scenarios is small and the mean distance of the target dis-
tribution to the source distributions is small. For simplicity,
Theorem 1 assumes a target feature in the unit cube, which
can be realized in practice by additional normalization pro-
cedures.

Our method tries to minimize the left-hand side of Eq.
(2) (target error) by mapping the data in a new space where
an approximation of the right-hand side is minimized. The
minimization of the second term on the right-hand side is
tackled by aligning all source distributions in the new space
(they move towards zero in Fig. 1, right column). The mini-
mization of the first term is tackled by subsequent regression.

It is important to note that the alignment of only the source
distributions does not minimize the second term on the right-
hand side, if the target distribution Q is too different from all
the source distributions P1, . . . , PS (Ben-David et al. 2010).
As there is no data given from Q in our problem setting
(Sect. 3), we cannot identify such cases based on samples.
As one possible solution to this problem, we propose to con-
sider only parameter vectors pQ which represents physical
dimensions of tool settings that are similar to related tool
settings represented by p1, . . . ,pS (see Fig. 2 and compare
Fig. 1).

Practical implementation

Consider some source samples X1, . . . , XS ∈ R
L×N×T with

target feature vectors Y1, . . . ,YS ∈ R
L×T and parameter

vectors p1, . . . ,pS ∈ N
P (e.g. parameters 30, 50 in Fig. 1).

Fig. 2 Use case scenarios with parameters a (horizontal axis) and b
(vertical axis). Source scenarios are marked by dots and target scenarios
by crosses

For simplicity of the subsequent description, the number of
samples L is assumed to be equal for each scenario.

The goal of ScITSM is to compute a mapping

Ψ : RN×T × R
P → R

N×T (4)

which transforms a time series x and a scenario parameter
vector p to a new time series Ψ (x,p) such that the (source)
distributions of Ψ (X1,p1), . . . , Ψ (XS,pS) are similar and
such that a subsequently learned regressionmodel f : RT →
R
T performs well on each scenario.
Here,Ψ (X ,p) refers to the sample matrix that is obtained

by applying Ψ (·,p) to each row of the sample matrix X .
The computation of the function Ψ in ScITSM involves

three processing steps: 1. Calculation of a mean curve for
each source scenario, 2. Learning of correction functions at
equidistant fixed time steps, and, 3. Smooth connection of
correction functions.

Step 1: Calculation of mean curves In a first step a smooth
curve called mean curve is fitted for each source scenario
(dashed lines in middle column of Fig. 1).

Therefore, for each of the scenarios samples X1, . . . , XS ,
the mean value for each of the N features and T time steps is
computed and a spline curve is fitted subsequently by means
of the algorithm proposed in Dierckx (1982). This process
results in a matrix X̂ ∈ R

S×N×T storing the mean curves
(rows) for each of the S source scenarios.

Step 2: Learning of Equidistant Corrections After the
mean curves are computed K equidistant points t1, . . . , tK
are fixed and K corresponding correction functions

Φ1, . . . , ΦK : RP → R
N (5)

123



Journal of Intelligent Manufacturing

are learned which map a parameter vector pi correspond-
ing to the i-th scenario close to the corresponding points
x̂t1 , . . . , x̂tK of the i-th mean curve x̂i = (̂x1, . . . , x̂T ), i.e.
the i-th row of X̂ . This is done under the constraint of simi-
lar predictions Φt ′(pi ),Φt ′′(pi ) of nearby time steps t ′, t ′′ of
two points x̂t ′ , x̂t ′′ on the mean curve.

We apply ideas from the Multi-Task Learning approach
proposed in Evgeniou et al. (2004) that aims at similar pre-
dictions by means of similar parameters θ1, . . . , θK of the
learning functions Φ1, . . . , ΦK . More precisely, we propose
the following objective function:

min
Φ1,...,ΦK

K∑
k=1

( S∑
i=1

∥∥X̂i,:,tk − Φk (pi )
∥∥

+ α

min(k+R,K )∑
r=max(1,k−R)

‖θk − θr‖2
l |k−r |−1 + β ‖θk‖1) (6)

where Xi,:, j is the vector of features corresponding to the i-
th scenario and the j-th timestep, ‖·‖ is the Euclidean norm,
‖·‖1 is the 1-norm and θk ∈ R

Z refers to the parameter vec-
tor of Φk , e.g. Φk(p) = 〈θk,p〉 + b is a linear model with
Euclidean inner product 〈., .〉, parameter vector θk ∈ R

P

and bias b ∈ R. The first term of Eq. (6) ensures that the
prediction of the correction functions applied on the mean
curves are not far away from the mean curves itself. The
second term of Eq. (6) ensures similar parameter vectors of
2R nearby correction functions, where R ∈ N and α, l ∈ R

are hyper-parameters. The last term ensures sparse parame-
ter vectors by means of L1-regularization (Andrew and Gao
2007) with hyper-parameter β ∈ R.

Step 3: Smooth Connection To obtain a time series of
length T , we aim at a smooth connection of the functions
Φ1, . . . , ΦK between the points t1, . . . , tK . This is done by
applying ideas from moving average filtering (Makridakis
and Wheelwright 1977). For a new time step t ≤ T , we
denote by

R(t) =
{(�t − R + 1, �t� + R − 1

)
,

(�t − R + 2, �t� + R − 2
)
, . . . ,

(�t, �t�)} (7)

a set of pairs constructed from the equidistant timesteps
t1, . . . , tK in a nested order, where �t (�t�) denotes the
largest (smallest) number in {t1, . . . , tK } being smaller
(larger) than t . The coordinates of the final transformation
Ψ (x,p) = (Ψ1(x,p), . . . , ΨT (x,p)) in Eq. (4) are obtained
by

Ψt (x,p) = xt−

−
∑

(i, j)∈R(t)

m
|R(t)|−2i+2

2

(
Φi (p) + (t − i)

Φ j (p)−Φi (p)

j−i

)
∑

(i, j)∈R(t) m
|R(t)|−2i+2

2

(8)

where |R(t)| is the cardinality ofR(t) and m ∈ (0, 1] is the
smoothing hyper-parameter. That is, for each vector element
xt of the time series x, a sum is subtracted which describes
a (weighted) average of linear interpolations between the
points Φi and Φ j for each time step pair (i, j) ∈ R(t).
ScITSM is summarized by Algorithm 1.

Algorithm 1: Scenario-Invariant Time Series Mapping
(ScITSM)

Input: Samples X1, . . . , XS ∈ R
L×N×T and scenario parameters

p1, . . . ,pS ∈ R
P

Output: Mapping Ψ : RN×T × R
P → R

N×T

Init : Setting of hyper-parameters α, β, l ∈ R, K , R ∈ N and
m ∈ (0, 1] and initialization of K correction functions
Φ1, . . . , ΦK : RP → R

N

Step 1 : Calculation of mean curve tensor X̂ ∈ R
S×N×T as a

row-wise concatenation of the means (over rows and
columns) of X1, . . . , XS .

Step 2 : Computation of correction functions according to Eq.
(6).

Step 3 : Computation of transformation Ψ using Eq. (8).

Subsequent regression

Consider a transformation function Ψ : R
N×T × R

P →
R

N×T as computed by ScITSM, a previously unseen target
scenario sample XQ = (x1, . . . , xL) of size L drawn from
the unknown target distribution Q over RN×T and a cor-
responding parameter vector pQ ∈ N

P (e.g. parameter 40
in Fig. 1). As motivated in Sect. 4.1, the distribution of the
transformed sample Ψ (XQ,pQ) is assumed to be similar to
the distributions of the samples Ψ (X1,p1), . . . , Ψ (XS,pS)
which is induced by the selection of an appropriate corre-
sponding parameter space (see e.g. Figs. 1 and 2).

Subsequently to ScITSM, a regression function

f : RN×T → R
T (9)

is trained using the concatenated input sample
(Ψ (X1,p1); . . . ;Ψ (XS,pS)) and its corresponding tar-
get features (Y1; . . . ; YS). Finally, the target features of XQ

can be computed by f (Ψ (XQ,pQ)).
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Fig. 3 Some selected pre-processed time series of source scenarios (different colors) before (left) and after (right) the application of ScITSM (Color
figure online)

Theorem 1 shows that the empirical error

1

N

N∑
i=1

∥∥ f (Ψ (xi ,pQ)) − l(xi )
∥∥ (10)

of the function f ◦Ψ on the target sample can be expected to
be small, if the sample size is large enough (i.e. the empirical
error approximates well the error in Eq. 1) and the model f
performs well on the concatenated source data.

Use case

Intelligent manufacturing extends control systems with
machine learning models trained from gathered data, e.g.
Virtual Sensors (Wang and Nace 2009). We integrated our
approach described in Sect. 4 into the data-flow of a machine
learning pipeline used to implement a Virtual Sensor in an
IntelligentManufacturing setting similar to the one described
in Fig. 1.

Dataset

Our use case consists of 11 scenarios based on physical
tool settings with parameters describing physical tool dimen-
sions as illustrated in Fig. 2. For each scenario, we collected
around 50 time series. We applied some application-specific
normalization and transformation steps to each time series
including its subtraction from a finite element simulation of
the mechanical tool process. Some representative resulting
time series from the source scenarios are illustrated in Fig. 3
on the left. For our experiments we choose 6 (out of 11) sce-
narios as source scenarios and 5 scenarios as target scenarios.
The target scenarios are chosen such that its parametrization

is well captured by the parametrization of the source scenar-
ios (see Fig. 2).

Validation procedure

To estimate the performance of the proposed ScITSM on
previously unseen scenarios, we evaluate different regres-
sion models based on an unsupervised transductive training
protocol (Ganin et al. 2016; Gong et al. 2013; Chopra et al.
2013; Long et al. 2017) combined with cross-validation on
source scenarios.

In a first step, we select appropriate hyper-parameters in
a semi-automatic way. That is, the parameters are fixed by a
method expert based only on the unsupervised data from the
source scenarios without considering any labels, i.e. output
values, or target samples. The decision is based on visual
quantification of the distribution alignment in the represen-
tation space. As a result, the hyper-parameters are the same
for all subsequently trained regression models. The result of
some representative time series is illustrated in Fig. 3.

For evaluating the performance of regression models
trained subsequently to ScITSM we use 10-fold cross-
validation (Varma and Simon 2006). That is, in each of 10
steps, 90% of the data (90% of each source scenario) are
chosen as training data and 10% as validation data.

Since nodata of the target scenarios is used for training, the
models are evaluated on thewhole data of the target scenarios
in each fold.

Using this protocol, 10 different root-mean squared errors
for each model and each scenario are computed, properly
aggregated and (togetherwith its standard deviation) reported
in Table 1.

To show the advantage of using more than one source
scenario, we additionally optimize each regression model
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Table 1 Root mean squared error (and standard deviation) of regression models evaluated using tenfold cross-validation as described in Sect. 5.2

Scenario Without ScITSM With ScITSM Perc. Without ScITSM With ScITSM Perc.

Bayesian ridge Random forest

(1, 30) 0.443 (0.082) 0.239 (0.056) 53.93 0.259 (0.109) 0.262 (0.082) 101.13

(1, 50) 0.645 (0.070) 0.359 (0.103) 55.69 0.322 (0.140) 0.311 (0.111) 96.62

(1, 100) 0.431 (0.140) 0.299 (0.070) 69.34 0.308 (0.090) 0.267 (0.064) 86.48

(4, 30) 0.690 (0.117) 0.334 (0.077) 48.47 0.346 (0.095) 0.372 (0.064) 107.31

(4, 50) 0.431 (0.052) 0.243 (0.090) 56.44 0.317 (0.098) 0.238 (0.051) 75.11

(4, 100) 0.488 (0.105) 0.235 (0.064) 48.05 0.197 (0.077) 0.234 (0.101) 118.87

Average 0.521 (0.094) 0.285 (0.077) 55.32 0.292 (0.102) 0.281 (0.079) 97.59

(1, 40) 0.523 (0.078) 0.403 (0.125) 77.12 0.707 (0.243) 0.418 (0.163) 59.12

(1, 60) 0.709 (0.058) 0.394 (0.087) 55.54 0.461 (0.148) 0.381 (0.099) 82.72

(2, 40) 0.576 (0.092) 0.426 (0.117) 73.90 0.949 (0.236) 0.440 (0.108) 46.34

(4, 40) 0.426 (0.031) 0.342 (0.076) 80.30 1.062 (0.238) 0.399 (0.114) 37.57

(4, 60) 0.519 (0.110) 0.371 (0.142) 71.58 0.291 (0.060) 0.395 (0.165) 135.76

Average 0.551 (0.074) 0.387 (0.109) 71.69 0.694 (0.185) 0.407 (0.130) 72.30

SVR (sigmoid) SVR (RBF)

(1, 30) 0.586 (0.114) 0.253 (0.081) 43.17 0.243 (0.072) 0.238 (0.068) 97.64

(1, 50) 0.519 (0.221) 0.364 (0.170) 70.15 0.229 (0.092) 0.226 (0.078) 98.46

(1, 100) 0.694 (0.202) 0.379 (0.159) 54.63 0.249 (0.064) 0.242 (0.070) 97.26

(4, 30) 1.697 (0.341) 0.407 (0.067) 23.97 0.342 (0.122) 0.294 (0.098) 85.95

(4, 50) 0.363 (0.154) 0.325 (0.141) 89.66 0.201 (0.060) 0.192 (0.042) 95.71

(4, 100) 0.682 (0.199) 0.341 (0.090) 49.93 0.186 (0.059) 0.166 (0.032) 89.00

Average 0.757 (0.205) 0.345 (0.118) 55.25 0.242 (0.078) 0.226 (0.065) 93.28

(1, 40) 0.491 (0.142) 0.483 (0.134) 98.34 0.445 (0.151) 0.387 (0.129) 87.13

(1, 60) 0.637 (0.208) 0.450 (0.134) 70.70 0.337 (0.079) 0.321 (0.064) 95.24

(2, 40) 0.518 (0.085) 0.570 (0.158) 109.95 0.314 (0.055) 0.385 (0.096) 122.72

(4, 40) 0.684 (0.189) 0.452 (0.153) 66.08 0.382 (0.156) 0.378 (0.156) 98.66

(4, 60) 0.507 (0.202) 0.487 (0.196) 96.08 0.334 (0.056) 0.339 (0.134) 101.45

Average 0.567 (0.165) 0.488 (0.155) 88.23 0.362 (0.099) 0.363 (0.116) 101.04

Best values of scenarios are shown in boldface, improvements of ScITSM are shown by italic numbers

using the training data of only a single source scenario (see
Table 2).

We compare the following regression models and we use
the following parameter sets for selection:

– Bayesian Ridge Regression (MacKay 1992): The
four gamma priors are searched in the set {10−3,

10−4, 10−5, 10−6} and the iterative algorithm is stopped
when a selected error in the set {10−2, 10−3, 10−4, 10−5}
is reached.

– Random Forest (Breiman 2001): We used 100 esti-
mators, the maximum depth is searched in the set
{1, 2, 4, 8, . . . ,∞}where∞ refers to a pure expansion of
the leaves and the minimum number of splits is selected
in the set {2, 4, 8, . . . , 1024}.

– Support Vector Regression (Smola and Schölkopf 2004)
(SVR) with sigmoid kernel: The epsilon parameter is
selected from the set {10−1, 10−2, 10−3}, the parame-

terC is selected in {10−5, 5 ·10−4, 10−4, 5 ·10−3, 10−3}
and the algorithm is stopped when a selected error in the
set {10−3, 10−5} is reached.

– Support Vector Regression with RBF kernel:
The epsilon parameter is selected from the set
{10−1, 10−2, 10−3}, the parameter C is selected in
{10, 25, 30}, the bandwidth parameter is selected in the
set {10−5, 10−4, 10−3, 10−2, 10−1, 1} and the algorithm
is stopped when a selected error in the set {10−3, 10−2}
is reached.

Results

Figure 3 illustrates some selected time series pre-processed
by ScITSM. It can be seen, that the diversity caused by
different source scenarios is reduced resulting inmore homo-
geneous time series for subsequent regression.
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Table 2 Root mean squared error (and standard deviation) of regression models trained and evaluated on a single source scenario, i.e. one model
per scenario, using tenfold cross-validation as described in Sect. 5.2

Scenario Without ScITSM With ScITSM Perc. Without ScITSM With ScITSM Perc.

Bayesian ridge Random forest

(1,30) 0.215 (0.069) 0.210 (0.065) 97.66 0.255 (0.079) 0.261 (0.078) 102.15

(1,50) 0.202 (0.047) 0.202 (0.048) 100.00 0.370 (0.172) 0.352 (0.151) 95.05

(1,100) 0.342 (0.112) 0.341 (0.109) 99.67 0.325 (0.100) 0.330 (0.127) 101.55

(4,30) 0.275 (0.072) 0.275 (0.074) 100.09 0.351 (0.090) 0.334 (0.094) 95.00

(4,50) 0.217 (0.069) 0.217 (0.070) 100.00 0.301 (0.091) 0.292 (0.081) 96.84

(4,100) 0.197 (0.057) 0.196 (0.058) 99.42 0.240 (0.058) 0.269 (0.095) 111.70

SVR (sigmoid) SVR (RBF)

(1,30) 0.404 (0.096) 0.273 (0.099) 67.54 0.390 (0.157) 0.380 (0.161) 97.42

(1,50) 0.486 (0.223) 0.394 (0.222) 81.01 0.364 (0.173) 0.357 (0.159) 98.12

(1,100) 0.656 (0.229) 0.405 (0.167) 61.72 0.360 (0.201) 0.369 (0.194) 102.24

(4,30) 1.130 (0.149) 0.440 (0.071) 38.97 0.502 (0.298) 0.438 (0.244) 87.17

(4,50) 0.382 (0.176) 0.354 (0.174) 92.76 0.323 (0.108) 0.322 (0.110) 99.67

(4,100) 0.580 (0.181) 0.364 (0.094) 62.80 0.215 (0.080) 0.234 (0.102) 108.64

Improvements of ScITSM are shown by italic numbers

Table 1 shows the results of applying ScITSM to multiple
source scenarios. The application of ScISTM improves all
regression models in average root mean squared error except
the support vector regression model based on RBF kernel.

The scenario (2, 40) is the only scenario where the appli-
cation of ScITSM reduces the performance of support vector
regression models by a large margin. From Fig. 2 it can be
seen that both tool dimensions 2 and 40 are not considered in
the source scenarios.We conclude that at least one dimension
should be considered in the source scenarios in our use case,
otherwise the scenario distributions are too different. This
well known phenomenon is often called negative transfer
(Pan et al. 2010).

It is interesting to observe that the random forest mod-
els ‘overfit’ the source scenarios. This can be seen by a low
average rootmean squared error on the source scenarios com-
pared to the target scenarios. Consequently, it is hard for
ScITSM to improve the performance on the source scenarios
(average error decreased to 97.59%of that of the rawmodels)
where the target scenarios errors are improved by a largemar-
gin. The target scenario improvement is without considering
scenario (4, 60) where the random forest model performed
best over all models. This improvement is not unexpected, as
the ‘overfitting’ of source scenarios can imply performance
improvements in some very similar target scenarios. How-
ever, our goal is an improvement in many scenarios, not in
single ones.

In general ScITSM improves the results of regression
models in 9 out of 11 scenarios, where the remaining two
results have explainable reasons of negative transfer andover-
fitting.

In principle it is possible that a high root mean squared
error of the models without ScITSM is caused by mixing
data from different scenarios, i.e. negative transfer happens.
To exclude this possibility, we trained one model for each
scenario and computed the root mean squared error for all
other scenarios.

In a first step, we observed that no model is able to gen-
eralize to scenarios other than the single training one. The
resulting root mean squared errors of the single scenario
trainedmodels are excessively high and give no further infor-
mation that can be reported in this work. One possible reason
is that the scenarios are too different. For example, consider
a model trained on the yellow time series in Fig. 3 on the
left and tested on data on the green time series. This experi-
ment underpins that generalization is not possible for models
trained only on single scenarios (standard regression case)
and that the considered problem of domain generalization is
important in our use case.

It is interesting to observe that even models trained on sin-
gle scenarios (standard regression case) can be improved by
considering data from different scenarios. To see this, con-
sider Table 2. Each column denoted by ‘without ScITSM’
shows the performance of different models trained on data
froma single scenario only (shownby the row). This is in con-
trast to Table 1 where each column shows errors of the same
model on different scenarios. Applying ScITSM to data from
other scenarios, almost always improves the performance of
(standard) regression models. This is interesting as one may
expect that models trained on data from a specific scenario
cannot be improved by data from different scenarios. How-
ever, this positive effect of transfer learning can happenwhen
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Fig. 4 Performance dependency on sample size of support vector
regression with RBF kernel without applying ScITSM (solid) and with
the proposed ScITSM (dashed). Horizontal axis: Percentage of training
data; Vertical axis: Average root mean squared error over all unseen
target scenarios except negative transfer scenario (2, 40)

a high number of scenarios is considered with a comparably
low amount of samples.

Another interesting question is about the effect of ScITSM
when the amount of source scenario samples decreases.
Therefore, we consider the average root mean squared errors
over all target scenarios of the best regression models,
i.e. SVR with RBF kernel, for a varying number of source
samples. The result is shown in Fig. 4. It can be seen that
the positive effect of ScITSM gets even stronger when the
sample size of all scenarios decreases by a certain percentage
value.

Our procedure of choosing appropriate parameters for
ScITSM requires expert knowledge about our method. In our
use case, long-term knowledge from several years resulted in
a well-performing default setting. It is interesting to observe
that this default setting gives a high performance inde-
pendently of the data size (see Fig. 4). It is important to
note that the selection of appropriate parameters is sophisti-
cated in the considered problem of domain generalization,
as no data of the target scenarios is given. No classical
cross-validation procedures can be used which would suffer
from an unbounded bias in the generalization error esti-
mate (Zhong et al. 2010). Finding appropriate parameters
for transfer learning is an active research area (You et al.
2019). Most methods rely on a small set of data from the
target scenarios (Long et al. 2012; Ganin et al. 2016) or
fix their parameters (Zellinger et al. 2017) to some default
values. Unfortunately, both variants cannot be used in our
industrial use case. Note, by using this method, the resulting
performance of the regressionmodels in the source scenarios
cannot be directly interpreted as estimating the generaliza-
tion error. However, in this work, we are more interested in
the generalization error of the unseen target scenarios, which
are not effected.

We finally conclude that our method successfully enables
the improvement of the performance of regression models
in previously unseen scenarios by using information from

multiple similar source scenarios. The result is obtained by
a single regression model, which is conceptually and com-
putationally simpler than the application of multiple single
models for separate scenarios.

Conclusion and future work

A multi-source transfer learning method for time series data
is proposed. The method transforms the data in a new space
such that the distributions of samples produced by multi-
ple different tool settings are aligned. Domain knowledge is
incorporated by means of corresponding tool dimensions. In
a real world application of industrial manufacturing, the pro-
posed methods significantly reduce the prediction error on
data originating from already seen tool settings. The biggest
benefit of the proposed method is that it can be applied to
unseen data from new unseen tool settings without the need
of time and cost intensive collection of training data using
these settings.

Unfortunately, parameter selection becomes an important
issue without data from unseen tool settings. Without such
data, it is also hard to identify wrong expert knowledge used
in our work to select appropriate future settings.

However, small amounts of (possibly unlabeled) data from
new tool settings could be used to improve the parameter
selection process in the future. These small amounts of data
could also be used to overcome the phenomenon of negative
transfer by strengthening the similarity assessment of data
distributions from different tool settings.
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Appendix: Proof of Theorem 1

Proof Let p1, . . . , pS and q be the probability density func-
tions of P1, . . . , PS and Q, respectively. Then the following
holds:

EQ [‖ f − l‖] =
∫

‖ f − l‖ q

+ 1

S

S∑
i=1

∫
‖ f − l‖ pi − 1

S

S∑
i=1

∫
‖ f − l‖ pi
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= 1
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∫
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(
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∫
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∫
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S
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EPi [‖ f − l‖] + sup
x∈RN×T

‖ f (x) − l(x)‖

×
∫

1

S

S∑
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|q − pi | ≤ 1

S
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+ sup
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√
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where the last equality follows from the application of
Lemma 2.1 in Tsybakov (2008). ��
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