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Abstract. Time-of-flight (TOF) full-field range cameras use a correla-
tive imaging technique to generate three-dimensional measurements
ofthe environment. Though reliable and cheap they have the disadvan-
tage of high measurement noise and errors that limit the practical use of
these cameras in industrial applications. We show how some of these
limitations can be overcome with standard image processing techni-
ques specially adapted to TOF camera data. Additional information
in the multimodal images recorded in this setting, and not available
in standard image processing settings, can be used to improve reduc-
tion of measurement noise. Three extensions of standard techniques,
wavelet thresholding, adaptive smoothing on a clustering based image
segmentation, and an extended anisotropic diffusion filtering, make use
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of this information and are compared on synthetic data and on data
acquired from two different off-the-shelf TOF cameras. Of these meth-
ods, the adapted anisotropic diffusion technique gives best results, and
is implementable to perform in real time using current graphics proces-
sing unit (GPU) hardware. Like traditional anisotropic diffusion, it
requires some parameter adaptation to the scene characteristics,
but allows forlow visualization delay and improved visualization of mov-
ing objects by avoiding long averaging periods when compared to
traditional TOF image denoising. © 2012 SPIE and IS&T. [DOI: 10
.1117/1.JE1.21.2.023012]

1 Introduction

Three-dimensional (3-D) object recognition is a task which is
becoming increasingly important in real world applications
such as industrial automation and surveillance. One promising
technique for acquiring such data is full-field time-of-flight
(TOF) range imaging. This technique uses active illumination
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and correlative image sensing to produce an image that con-
tains both distance and intensity information in every pixel.

As range imaging technology advances, affordable, com-
pact, and reliable camera systems are becoming available.
However, measurements from these cameras still suffer
from high noise levels and undesirable measurement arti-
facts, which often prohibit their use in many applications.
By applying state of the art image processing to range
image data, we obtain information more suitable for auto-
matic post-processing and object recognition.

In the following we review image acquisition (Sec. 2.1),
the different kinds of noise and artifacts commonly seen in
range images (Sec. 2.2), and present denoising techniques
especially adapted for these situations (Sec. 2.3). These tech-
niques are first applied to synthetic data for a systematic
comparison of their performance and relative strengths
and weaknesses (Sec. 3). Additionally, they are applied to
data acquired with two different commercially available
TOF range cameras, showing significant improvements in
image quality also on real recordings (Sec. 4). The conclu-
sions (Sec. 5) wrap up our most relevant findings.

2 Methods

2.1 Image Acquisition
2.1.1 General

By its nature, TOF imaging is an active system. That is, the
scene is illuminated with an intensity modulated light source,
typically in the region of 10 to 100 MHz. In addition to ampli-
tude modulated continuous wave (AMCW) TOF imaging
there exist other variants as well. As most of the commercially
available TOF cameras currently are of the AM-CW type, we
have limited our investigations to this type. The propagation
time for the illumination to travel to objects in the scene and
back to the camera is determined by measuring the resultant
phase change in the illumination modulation envelope. This is
achieved by gain modulating, or shuttering, an image sensor
with the same waveform as that of the light source modula-
tion.'™ Specialized image sensors are required because tradi-
tional sensors do not have the capability to shutter the sensor
at high-speed during the integration period.

Short propagation distances result in a small phase shift,
meaning the illumination modulation is approximately in
phase with the sensor gain modulation, resulting in a bright
value recorded at a corresponding pixel. Longer propagation
distances cause the illumination modulation to become out-
of-phase with the sensor modulation, resulting in a darker
pixel value.

Of course, a single brightness value does not provide a
reliable distance estimate because factors such as object
color or reflectivity, and background illumination, also affect
pixel brightness. To overcome this limitation, four images
are normally acquired with the relative phase of the illumi-
nation and sensor modulation signals stepped by 90 deg
between each image. The phase, ¢, amplitude, a, and offset,
b, values are independently calculated for each pixel by

azz\/(Ao—A2)2+(A1 - A3)?, 9]

1
bZZ(AO +A; +A; +A3), 2)
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where Aj, A1, A,, and A5 are the pixel brightness values from
the four successive images. The object distance d (now called
range) is calculated from the phase, modulation frequency, f,
and the speed of light, ¢, with

P

" daf @

2.1.2 Generated images

Although it is possible to produce three images containing
ambient background intensity (from the offset b), active
intensity (from the amplitude a), and distance (derived
from the phase ¢), range imaging cameras typically only out-
put the range image and the active intensity image I = a?
(simply referred to as “intensity image” henceforth). Because
of the cyclic nature of the phase measurement, the distance
measurements also exhibit a wrap-around nature, referred to
as distance ambiguity or aliasing. This ambiguity is inversely
proportional to modulation frequency, so a lower frequency
provides a longer unambiguous measurement distance. How-
ever, distance measurement precision improves with increas-
ing modulation frequency, so a trade-off must be made
depending on the application. Some techniques for resolving
distance ambiguity have been published.>® These techniques
are based on processing data from two range measurements
acquired at different modulation frequencies, but are used in
few commercial products.

Most cameras also have the capability to perform a per-
spective projection to output real-world 3-D locations and
intensities for each pixel. This process also includes a
lens distortion correction, using calibration data generated
during manufacture. Consequently, most range imaging
system are shipped with a fixed focal length and fixed
focus lens, as the calibration changes if the focal length is
adjusted. This also means that these cameras have a fixed
field of view.

2.2 Noise Model
2.2.1 Intensity based bias

The effect of varying materials (different surface properties
like color, roughness or reflectivity) at the same range result-
ing in different range measurements has been observed
in a number of different scenes (Fig. 1). According to
Eqgs. (1)—(3) the brightness image A, phase-shifted by A,
can be expressed as

Ay =b+acos(p+ Ap). )

As the brightness image always satisfies A; > 0, the offset is
limited to b > a, whereas the highest modulation range is
achieved for b = a, resulting in an intensity dependent offset
b proportional to a. In real world applications the back-
ground determines the offset with b > a.

The bias on the range measurement occurs when there is
multi-path interference. Each pixel receives a combination of
the primary desired return plus other low level interfering
multi-path returns. These multi-path components arise
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Fig. 1 Range image of a plain wooden checkerboard. Black squares
are noisier and appear on average farther away from the camera than
white squares. Gray level denotes distance from camera in meters.

from scattering inside the lens and/or multiple reflections
from objects in the scene. If the primary return is bright,
then the multi-path interference has only a small effect on
the measurement. However, if the primary return is of a
low intensity, the multi-path interference has a significant
effect that manifests as a bias offset.

2.2.2 Phase noise

Both intensity and range images show strong noise on the
recorded data, with the noise in the range images especially
dominant. The latter is denoted phase noise, and assuming
approximately Gaussian noise and sufficient amplitude
then n,~N(u,.0%), ie., Gaussian white noise with
mean p, and variance O'é. The phase noise is influenced
by the statistical surface structure (roughness) and brightness
(color). Noise in the intensity image, denoted intensity noise,
and given by n, ~ N (u,,02), is of higher relevance for
shorter illumination times.

Assuming the same statistical distribution for each
recorded Ay (b, p,a) with variance o} =o°, it can be
shown7 for the variance of a, ¢, b, that this statistical relation
holds:

1 1 1
var(a, p,b) = (02, 05,07) = (E,W,Z) o’ (6)

Hence, darker regions in the intensity image cause higher
phase noise in corresponding regions in the range image
(cf. Fig. 1). As aé changes with the reciprocal of the squared
amplitude it leads to phase noise varying over several orders
of magnitude. However, utilizing the known dependence
from the amplitude, the local variance can be estimated
and used for error decorrelation and denoising. This estima-
tion is possible because the error on the phase image decorr-
elates very quickly in time, hence subsequent measurements
can be used to compute this quantity.

2.2.3 Object border noise

Pixels that image the edge of objects often contain errors in
the distance information, termed flying pixel effect. Anom-
alous distance measurements arise because a particular pixel
may receive light from two (or more) objects at different
distances. Intuitively, one could expect the distance mea-
surement resulting from such flying pixels to lie somewhere
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between the actual distances, but this is not always the case.
As the modulation envelope of the illumination can be
described by a phasor, light collected in one pixel from mul-
tiple objects or surfaces in the scene is the sum of the phasors
for each return. Consequently, the combined phase (and the
resulting anomalous distance measurement) falls between
the multiple individual return values only if the phase differ-
ence is less than z radians. If the phase difference is larger,
then the anomalous distance measurement falls outside the
actual objects, and visually appears somewhat random.
Methods for identifying flying pixels that have been
reported typically use processed point-cloud data. Relatively
simple algorithms of identifying isolated points and median
filtering are described by.® More sophisticated approaches
such as normal-angle filtering, edge-length filtering and
the cone algorithm were investigated by,” but it was found
that generally these algorithms did not perform to a high
standard. More advanced methods of detecting and even cor-
recting flying pixels have also been reported. These include
decomposing the flying pixels into their distinct compo-
nents, '? detecting discontinuities in the returned signal
amplitude,'' and deconvolving the returned signal.'?

2.3 Noise Removal
2.3.1 Intensity based bias

We have tried three different approaches for removing the
range bias:

¢ Naively estimating the multi-path interference as a homo-
geneous value across the image and simply subtracting a
scaled phasor value prior to calculating distance.

¢ Separating the primary and multi-path returns by pro-
cessing two acquisitions of the same scene at different
modulation frequencies.

¢ Adding a bias linearly related to intensity.

However, because the multi-path effect changes when the
scene changes we have not been able to automate the process
of removing the range bias so far. Therefore we accept in
Sec. 4 that there is some bias and just reconstruct this biased
range image as well as possible.

2.3.2 Phase noise

The ideas for removing noise from images are manifold and
include:

e pure isotropic filtering such as Wiener filters' or Gaus-
sian filters,"

* anisotropic filtering such as Perona-Malik'® and suc-
cessors, see e.g.,'

» wavelets such as wavelet shrinkage,'®
e stochastic methods such as median filters,"

and many more.

These methods mainly work in a context with noise being
rather similar over the whole image. Our case with noise
varying over several orders of magnitude is problematic to
handle using these methods, especially as all methods above
are steered by a global noise dependent parameter that controls
the balance between noise removal and image preservation.
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Due to this very special structure of the noise some dif-
ferent or specially adapted methods are required. For the sto-
chastically motivated context we refer to Ref. 17. In the next
three paragraphs we will concentrate on more numerically
motivated methods, namely locally adapted wavelet shrink-
age, clustering and adapted anisotropic filtering.

Wavelets. A standard tool for noise removal is wavelet
thresholding (also called wavelet shrinkage)'®'®° where
the smoothed phase is
Ps = zci.jwijv (7
ij

with W, ; an appropriate wavelet basis,

o Lo Wiy for [{p. Wij)| > & ®)

W 0 otherwise,

and with 6 depending on the noise level in the data. For the
ease of presentation we restrict ourselves to hard threshold-
ing. Obviously standard wavelet thresholding is not appro-
priate for largely varying local noise levels.

Reference 21 presents an approach using joint range and
intensity images to cluster the scene, for each wavelet scale
and orientation. They exploit the fact, that the intensity
image is less noisy than the range image, while features
(like edges) in one image are usually present in the other
as well. This approach improves on standard wavelet
thresholding, but suffers from estimation of a uniform
noise covariance matrix across the whole image, which is
not appropriate for range images (cf. Sec. 2.2.2).

We can alternatively make use of knowledge about the
variance of wavelet coefficients obtained from a few succes-
sive images. This is possible because the noise decorrelates
very quickly in time, cf. Sec. 2.2.2. By application of a small
modification to Eq. (9), adapting the threshold level for each
wavelet coefficient with the variance (i.e., a local threshold o)
of this particular coefficient, we arrive at the following
thresholding for c;;, first shown in Ref. 22:

o = { (p, Wij) for [{p, W;;)| > tvar{(p, W;;)} ©)

W 0 otherwise,

where 7 > 1 controls the balance between accepted noise and
accuracy in the reconstruction. As for all stochastic inspired
methods this is prone to outliers, which result in visible arti-
facts. Although another problem might be the dependence of
the method on parameterization (e.g., wavelet basis) to be
appropriate for a specific scene, the method is quite robust
regarding this according to our experiences. A large advan-
tage is that the method is very fast compared to the methods
shown in the next paragraphs. Its denoising quality might be
further improved by also using information from intensity
images (and thus the local noise level), instead of estimat-
ing noise from consecutive range images. The methods
presented in the following two paragraphs try to explicitly
exploit the dependencies between intensity and range
images.

Clustering. Regions of the image with similar range
and intensity values usually share the same noise level.
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We elaborated on this idea,”” using a clustering approach
to first identify regions which are are most probably be-
longing to the same object and hence have similar noise
properties. Then we apply standard Gaussian smoothing
inside these regions with parameters adapted to their noise
characteristics.

The feature space for the clustering algorithm is
5-dimensional, with one vector

d(x.y) = [p(x.y).1(x.y).log 65,(x.y).x,y]  (10)

per pixel. The noise variance image 62 (x,y) is estimated
from temporally adjacent range images (five in our exam-
ples) and slightly smoothed. The pixel position (x,y) is
included to obtain spatially relatively compact clusters.
The individual components of this vector can be scaled to
adjust for characteristics of camera, illumination and scene;
in the following we divide the components by their standard
deviation and then usually scale by w = (0.7,1,1,0.4,0.4).

Several clustering algorithms are available to find regions
with similar properties. We use a Mean Shift variant,***
because of its flexibility regarding the number and shape
of clusters. Further details of the approach are provided
in Ref. 22.

Due to the properties of the Mean Shift algorithm local
outliers are automatically put to the surrounding cluster
and so do not spoil the results. Although the clustering
results seem to be comparably good, there might be cluster-
ing algorithms that result in an even better performance.

This algorithm works very well for scenes with relatively
homogeneous surfaces and extreme noise levels, but can be
adapted to also preserve fine details if the noise level is not
too high. It has the additional advantage of providing an
initial image segmentation, but is usually too slow for real
time application (about 20 s with non-optimized implemen-
tation on the stairs scene presented in Sec. 4).

It should be noted that other much faster algorithms which
search for similarities in the surrounding like’*® would run
into severe problems due to the extremely varying noise levels
within the range image which results in the fact that the same
difference to a neighboring point needs to be interpreted very
differently at different locations of the image.

Extended anisotropic diffusion. The idea of clustering in
the prior paragraph is to apply a Gaussian kernel with an
adapted amount of smoothing on patches which are identi-
fied as belonging together. Isotropic Gaussian smoothing can
be rewritten in terms of a differential equation, Eq. (11) with
constant coefficient D.'* Increasing amounts of smoothing
are realized by propagating Eq. (11) over longer periods
(i.e., larger ranges for ?).

The idea due to Perona-Malik' is to steer the diffusion
locally in a specific direction by introducing D(-, -)

(9/0t)p = div(DV ), (11)

with boundary condition
@(-.,0) = @, (12)

where D depends on the local derivatives. Popular choices
are
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D=1/(1+c||Vel?) (13)

and
D = exp(—||Vo||/c). (14)

In order to stabilize the derivatives one normally operates on
a slightly smoothed version of the image at this point.

Modifications of this general idea are manifold, the exam-
ples®’! are by no means complete or representative. Some
of these also discuss ideas about how to use vector valued
data and how to do some local adaption. Proofs of conver-
gence and stability exist for easy standard cases; however it
does not seem to be likely that they carry over easily to our
special situation and the extensions outlined below.

Obviously, modifying D in Eq. (13), Eq. (14) by a con-
stant factor in front does nothing but change the speed of the
diffusion. Formulated differently, one can steer the amount of
smoothing as well in the PDE itself and do not necessarily
need to rely just on the amount of time it is performed.

Hence what is common to all variants of this PDE aniso-
tropic diffusion approach is

* D is chosen proportional to the noise level, or

* D is chosen proportional to a “non-edge”-detector, i.e.,
the less likely we have an edge the bigger is D.

TOF-cameras provide a quite comfortable situation that is
different to normal image processing tasks, namely

¢ the local noise level, that is of,,, is known a priori; as
this quantity is very noisy itself we use a smoothed ver-
sion S(c7). Alternatively one can use 1/a? as remarked
above in the discussion of Eq. (6).

* In many real images, material and/or color changes
often coincide with range differences; i.e., edges in
the intensity image I and the variance 02, can be
used as additional information to limit range smooth-
ing across different regions of the scene.

* Furthermore one can use an edge detector on ¢(-, -, t).

In our example we chose the modulus of the gradient as edge
detector (we denote this approach as extended anisotropic
diffusion, EAD, in the following):

1 —|—c,S(0'§,)
b=1 Vol V|2 VS(a2) |2’
+ &l Voll” + a3 || VI||* + ¢4||VS(ay,) |l

15)

where the quantities 1 + ¢3||VI||* 4 ¢4[|VS(c3)||* and 1+
c¢18(6,,) can be precomputed. The PDE is solved iteratively
with a stepsize tuned to maximize speed without running into
instabilities. The choice of the constants ¢y, ¢,, ¢3 and ¢4 is
discussed below. In the case when one also identifies the fly-
ing pixels at object borders this information can be easily
incorporated in the above calculations as a further term in
the denominator.

It is important to note that the values of the parameters ¢ and
others greatly affect the performance and time consumption
of the method. As we see the same effects as in the standard
image denoising case (which is proven and well studied) we
think that this new variant performs similarly and the same
measures to optimize the parameter setting are successful.
Furthermore, the experiments on synthetic data in Sec. 3

Journal of Electronic Imaging

023012-5

show, that an optimization of these parameters for general
scene characteristics is feasible.

With an implementation of this method on a GPU, we are
able to process a 256 X 256 pixel image in 30 to 40 ms,
allowing application in real time even for larger images
(cf. Sec. 4.4).

3 Performance on Synthetic Data

For a systematic comparison of the aforementioned denois-
ing methods we used synthetically generated images. The
background is a simple plane with constant distance, possi-
bly overlaid by a pattern of bumps of configurable ampli-
tude, by adding a low frequency 2-D sine wave. Five
further planes are then placed at random positions and in ran-
dom distance with given variance before or behind the back-
ground. They are also overlaid by bumps of configurable
size, and can have a random tilt (slope) of a given variance
and random direction. This is to simulate more realistic non-
planar object surfaces. The intensity of background is set to a
relatively low level, while that of the objects is chosen ran-
domly, and noise is added to both range and to a lesser degree
to intensity images. Variance of noise is scaled according to
the inverse intensity of the respective pixel, appropriate for
TOF data [cf. Eq. (6)]. We defined some test scenarios where
we varied the presence and strength of bumps, of tilts, and
the noise level. Figure 2 shows an example for such a gen-
erated scene (range image), with medium bumps (only
slightly visible because of the noise) and tilts of the object
planes. Table 1 gives a short description for generated sce-
narios, the achieved denoising quality for each denoising
algorithm (measured as the root mean squared error RMSE
between the denoised and the noiseless original images), and
the average signal to noise ratio (SNR), together with
standard deviation. These results were obtained by first
optimizing the parameters of each algorithm for five
random realizations of the corresponding scenario, and then
applying the method with fixed parameters to 50 other ran-
dom realizations of that scenario (the standard deviations
are taken from these 50 test samples). The averaging
(and all other denoising methods) had four range and inten-
sity images with independent noise (for each time point
and pixel) from each scene realization available. The best

20 40 60 80 100 120 140

Fig. 2 Example for a range image of a synthetic data example from
scene “medium bumpsttilts.”
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Table1 Performance (RMSE and Std. Dev. for 50 realizations) of denoising using standard averaging and the presented EAD, clustering, wavelet
methods on synthetic data. Significantly best performing methods for each scene type are highlighted in bold.

Scene characteristics Averaging EAD Clustering Wavlet SNR [dB]

No bumpsttilts 0.52 + 0.061 0.12+0.033 0.08 + 0.065 0.22 +0.037 0.11 +4.070
Medium bumpsttilts 0.54 + 0.061 0.12 + 0.022 0.18 +0.077 0.24 +0.034 2.05 + 3.066
Medium bumps 0.54 +£0.076 0.12 +0.024 0.12 +0.052 0.24 +0.052 1.83 +2.686
Strong bumps 0.54 +0.074 0.12 + 0.037 0.21 +0.069 0.24 +0.045 2.02 +2.781
Medium tilts 0.54 +0.064 0.12 + 0.024 0.19+0.115 0.24 +0.036 1.76 + 3.294
Strong tilts 0.54 +0.070 0.08 +0.016 0.39 +0.159 0.26 + 0.037 4.67 +2.455
Very low noise 0.15+0.020 0.03 + 0.005 0.09 +£0.039 0.07 +£0.011 11.69 +2.336
Low noise 0.32 +0.036 0.05 + 0.009 0.10 +0.053 0.14 +0.022 6.85 + 3.336
Strong noise 0.78 +0.097 0.18 +0.037 0.19+0.116 0.33+0.047 —1.28 + 3.508
Very strong noise 1.17 £0.137 0.28 + 0.041 0.26 + 0.164 0.46 + 0.098 —-4.66 +£3.219

performing method is printed in bold; statistical significance
of performance difference was tested pairwise between algo-
rithms using matched pairs Wilcoxon signed-ranks test*
with a significance level of 0.05, with Bonferroni correction
to account for multiple testing.

It was found, that for such scenes with widely varying
levels of noise and other image characteristics, the EAD
method overall performed best. It significantly outperforms
the other methods, or is among the best for all but one of the
considered scene variants. The clustering approach also per-
forms well, as long as the scene does not contain strong
slopes. The EAD and wavelet methods are relatively robust,
while the clustering approach has a higher variation in
denoising quality.

4 Results on Real Data

Images were captured using two different commercially avail-
able TOF range cameras. The first camera is a SR4000 man-
ufactured by MESA Imaging. It produces range images with
176 x 144 pixel resolution, and uses 24 near infrared LEDs to
illuminate the scene with a typical modulation frequency of
30 MHz. The second camera, a Canesta XZ422, utilizes 20
LEDs operating at 44 MHz, and provides 160 X 120 pixels
over a slightly narrower field of view compared to that of
the SR4000. Both cameras are capable of producing range
images at video (30 Hz) frame rates, making them suitable
for a wide variety of applications.

For comparison of the presented noise removal methods,
we use two example scenes. The “Stairs” scene in Fig. 3 is
recorded with a Canesta XZ422 camera with 0.5 ms integra-
tion time per image frame, and shows a scene that consists of
differently colored cardboard pieces arranged in a stair-like
fashion (row 1: black cardboard; row 2: plain paper black,
brown, purple, white; row 3: white glossy paper, plain yellow
paper, sand paper, black felt; row 4: plain paper green,
orange, blue, red). The dark square with high noise level
in the middle is caused by the low IR reflections of
sand paper. This scene was designed to test influences of
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differently reflecting surfaces on noise level and bias in
range measurements.

Figure 3 shows the “Lab” scene, which was recorded with
a SwissRanger SR4000 camera with 1 ms integration time
per frame, as an example of a realistic scene with objects
of varying complexity and orientations. A denoising by 3 X 3
adaptive neighborhood and 3 X 3 median filtering was turned
on in the camera hardware. The resultant fine structures and
low noise levels in one part of the picture in contrast to the
very high noise levels in dark parts of the scene pose a sig-
nificant challenge to denoising algorithms.

We applied the wavelet, the clustering, and the anisotropic
diffusion denoising methods to each of these scenes. The
clustering method uses the same parameters for both scenes
(although these settings need not be appropriate in general
for all scenes), while THE WAVELET AND anisotropic dif-
fusion methods had to be adapted to the different camera and
illumination characteristics. For wavelets, we use Daube-
chies wavelets of order 3 with a decomposition level of 3,
and thresholds 7z = 3.0 (“Stairs” scene), 7 = 1.8 (“Lab”
scene). For clustering, we use a weighting of the dimensions
of w=1(0.7,1,1,0.4,0.4), together with the approach of
smoothing between clusters described by Moser et al.*>

The presented anisotropic diffusion results use the follow-
ing constants for weighting edges in the different images
(visually optimized): ¢; = 1000, ¢, = 0.002, c¢; = 0.0005,
¢y = 0.005 (“Stairs” scene), and ¢; = 500, ¢, = 0.1, ¢3 =
0.05, ¢4 = 0.1 (“Lab” scene). The step size is chosen appro-
priately to avoid divergences but still sufficient smoothing in
20 iterations. Results improve further with more iterations,
but we imposed this constraint to enable realtime application.

For each of the methods and scenes, we show the
denoised range images in Fig. 4. Additionally, in Fig. 5
we provide a plot of range versus position along a vertical
cut through both scenes, at column 100 for the “Stairs”
scene, and at column 110 for the “Lab” scene. These
plots show the 5-frame-averaged ranges, the clustering
denoised ranges, and the anisotropic diffusion denoised
ranges, for direct comparison.
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Fig. 3 Left: “Stairs” scene recorded with Canesta XZ422 camera with 0.5 ms recording time per frame; (a) IR-intensity image averaged over five
consecutively recorded frames; (b) range image averaged over five frames; (c) logarithm of noise image (variance) estimated from five frames of
the scene. Right: “Lab” scene recorded with SR4000 camera with 1.0 ms.
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Fig. 4 Left: denoising results for “Stairs” scene, using (a) wavelet, (b) clustering and (c) ext. anisotropic diffusion methods. Gray levels are accord-
ing to range, colorbar units are in mm. Right: denoising results for “Lab” scene, (d) using wavelet, (e) clustering and (f) ext. anisotropic diffusion
methods. Gray levels are according to range, colorbar units are in m.

4.1 Wavelets artifacts (as shown in the results for the “Stairs” and
Wavelet denoising as previously described ** can be a simple “Lab™ scenes, Fig. 4). But, contrary to the other two pre-
to use and robust method to reduce the level of noise in a sented methods, wavelet smoothing (as used by us) does
range image. It does not completely smooth flat surfaces, not yet make use of any additional information present in
and when used aggressively it can introduce some smaller the intensity image.
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4.2 Clustering

In our experience, this method works very well for scenes
with relatively smooth surfaces, even with very high levels
of noise. This can be seen in the “Stairs” scene (Fig. 4),
where the noise in the sandpaper square in the middle is
leveled out very well. It can also preserve fine details
very well, if the noise levels are not too high.

Figure 4 shows that it is hard to adapt the method (in its
current state) to scenes which contain fine details with low
noise levels and smooth surfaces with high levels of noise at
the same time. Here we could only find a suboptimal com-
promise for each of these scene parts. This is mainly due to
the use of the noisy range images for determining the clus-
ters. In regions with low noise, this information is important
and reliable, while in regions of high noise, the importance of
the range dimension in the clustering feature space has to be
lowered. The scaling of that dimension thus would have to
depend on the local noise level, which is not the case, yet.

For many applications, an initial segmentation of the
image into objects or parts of objects can be useful. Figure 6
on the left shows the clusters found by the clustering method

2500

2400 average
— — = cluster smoothed

ext. anis. diff.

2300 f\
2200 f

2100 f
2000 f

range [mm]

1900 |
1800 |
1700 |

1600 |

1500

0 20 40 60 80 100 120
(a)
3.4

32

28T
26T
247F

range [m]

22¢F

1.8F average
— — — cluster smoothed

Lol —— ext. anis. diff.

1.4

0 50 100 150
(b)

Fig. 5 Plots of cuts through the range images at (a) column 100
(“Stairs” scene) and (b) column 110 (“Lab” scene), for ranges esti-
mated by 5-frame-averaging, cluster smoothing, and ext. anisotropic
diffusion. The horizontal axis is along the row indices of the range
images.
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on the original five raw frames. These are hardly usable as a
starting point for segmentation or object recognition. On the
other hand, if the clustering is applied to the anisotropic dif-
fusion smoothed range image, as shown in Fig. 6 on the
right, then this segmentation starts to be useful, even for pre-
viously rather highly noisy regions (or images).

4.3 Anisotropic Diffusion

The results in Fig. 4 are tuned for speed, using only 20 itera-
tions. But already in the presented state they appear to be the
best in several respects. Edges are preserved almost as well
as by the clustering method (cf. Fig. 5), while at the same
time it is able to preserve details in low noise regions
(e.g., frame around monitor, shelves on the sides in “Lab”
scene; borders of cardboard background on side of stairs
in “Stairs” scene), and providing good and realistic smooth-
ing results in high noise regions (back rest of chair). With the
few iterations, some blotches can remain in high noise
regions (uppermost black cardboard stripe in “Stairs” scene).
Also, round or tilted surfaces are better preserved with
this method than with the clustering method. An example
is the tilted table/keyboard surface between the chair and
the monitor in the “Lab” scene, about rows 75 to 85 in
the cut in Fig. 5.

The main issue remaining for practical application seems
to be computation speed and the adaptation of parameters to
camera, illumination and scenes. It remains to be evaluated,

Fig. 6 Clusters found by the clustering method (a) on the original 5
raw frames, and (b) on the smoothed range image returned by the
anisotropic diffusion method. For the latter, the scaling of the dimen-
sions for clustering was adapted to w = (1.5,0.5,0.5,0.4,0.4).
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Table 2 Elapsed time for different EAD implementations.

Imagesize 256 x 256 512 x 512 1024 x 1024

DELL/8800 Ultra OpenCV [ms] 344 1359 6453
GPU/CUDA [ms] 32 37 50
GPU/SAC [ms] 34 116 389

SONY/GT 425M GPU/CUDA [ms] 77 195 2567
GPU/SAC [ms] 64 217 2942

whether they can be set in advance using only general knowl-
edge about these characteristics. The results on synthetic data
and our experience indicate, that the denoising performance
is very stable for a given parameter setting in all scenes with
similar noise properties, as defined in Sec. 3, or during one
recording of a real scene. In practice, we expect that a few
optimized settings for a given camera are sufficient. These
should depend on easily detectable scene properties like
intensity image magnitude (i.e., range image noise level),
and its variation across the image (ratio between minimal
and maximal intensity). Keeping this in mind, the same
techniques as used for optimizing parameters for standard
anisotropic diffusion should be successful, as the problem
structure is very similar.

4.4 Acceleration by GPU Programming

The anisotropic diffusion algorithm makes heavy use of
basic algebraic computations, which are well optimizable
using parallel computing. The runtime depends heavily on
the hardware platform used, and on the framework/language.
We have evaluated two approaches for runtime optimization:
manual optimization using code written directly for Nvidia’s
CUDA framework, and auto-parallelization tool support
using the language “Single Assignment C” (SAC).*> When
using CUDA, the developer has full control of the used par-
allelization concepts but needs special expertise in this
domain. The language SAC on the other hand offers a com-
petitive alternative for GPU programming by means of under-
standable syntax (thus enabling rapid prototyping) and
flexible application on heterogeneous hardware platforms.

To demonstrate the feasibility of real-time use of the ani-
sotropic diffusion variant, we use two different hardware
environments for our test scenario, (1) a DELL Precision™
690 and (2) a SONY VAIO™ PCG-81112M laptop. The
former uses a NVIDIA GeForce 8800 Ultra graphic card,
whereas the latter uses the newer NVIDIA GeForce GT
425M. The NVIDIA GeForce 8800 Ultra has 128 streaming
processors with a core frequency of 612 MHz, memory
frequency of 1080 MHz, 786 MB memory and a memory
bandwidth of 103.7 GB/s, whereas the NVIDIA GeForce
GTX 425M has 96 streaming processors with a core fre-
quency of 1120 MHz, memory frequency 800 MHz, up to
1024 MB memory and memory bandwidth of 25.6 GB/s.
For comparison, these are compared to an implementation
using OpenCV (on the DELL machine). The average runtime
is shown in Table 2.

Summarizing, GPU acceleration can give a speedup of
factors between 10 and about 1000. Depending on the
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architecture, SAC can compare favorably with manually
optimized code, while allowing quicker implementation.
SAC is optimized for the newer Fermi architecture used
in the GT 425M. Regardless of the type of GPU implemen-
tation, the execution times allow real time application of the
algorithm for images with realistic image resolutions.

5 Conclusions

We have demonstrated that it is possible to significantly
improve denoising of TOF images using adapted standard
denoising techniques. Especially the use of additional infor-
mation in images accompanying the range image, namely the
intensity and noise level images, is very helpful. Significance
was shown for synthetic scenes of differing characteristics,
while the improvement for realistic scenes has been dis-
cussed and shown visually. The presented new extended ani-
sotropic diffusion method has generally been shown to
perform best, regarding robustness over different types of
scenes, regarding RMSE error wrt. the noiseless image,
and regarding visual appearance. It is implementable for
real time processing. The choice of parameters can remain
constant for given characteristics of scenes. A priori choice
(instead of an optimization) was not considered in this paper,
but the same problems and approaches as for traditional ani-
sotropic diffusion should apply. The clustering based
approach has been shown to be very useful for highly
noisy and/or relatively smooth scene types. The wavelet
method is not as powerful, but easily tuneable and very
fast. Our version does not yet use the additional information
from the intensity or noise level images, but see Ref. 21

We have limited the investigations to TOF images of
AMCW type, because of the commercial availability of
such cameras. We do expect an improvement over traditional
denoising methods also for other TOF imaging types, and
also for other imaging domains, as long as there is multimo-
dal information with intermodal correlations available,
which can be used to determine regions of similar noise
properties in the image to denoise.

Manifold applications for denoised TOF images can be
found in robotics, surveillance and other industrial applications.
Based on denoised range images we can easily and reliably
segment the scenes; using GPU hardware we are able to
speed up the process for real time computation and inline
process control.

TOF as a cheap and robust range imaging technique can
be used as an alternative or to supplement stereo imaging
in 3-D object recognition tasks. The presented error and
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artifact removal leads to a major improvement in accuracy
and interpretability.
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