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Abstract. This paper investigates domain generalization: How to use
knowledge acquired from related domains and apply it to new domains?
Transfer Component Analysis (TCA) learns a shared subspace by min-
imizing the dissimilarities across domains, while maximally preserving
the data variance. We propose Multi-TCA, an extension of TCA to mul-
tiple domains as well as Multi-SSTCA, which is an extension of TCA
for semi-supervised learning. In addition to the original application of
TCA for domain adaptation problems, we show that Multi-TCA can also
be applied for domain generalization. Multi-TCA and Multi-SSTCA are
evaluated on two publicly available datasets with the tasks of landmine
detection and Parkinson telemonitoring. Experimental results demon-
strate that Multi-TCA can improve predictive performance on previously
unseen domains.

1 Introduction

In many real-world applications one would like to make use of the knowledge
acquired from related domains on previously unseen domains. This problem is
known as domain generalization, and recently has started to gain attention in
the machine learning community [12, 3]. Domain adaptation [14] and domain
generalization are subareas of transfer learning, aiming to find a shared subspace
for related domains. While domain adaptation methods require at least some
input data from the target domains, domain generalization methods are designed
to generalize to previously unseen domains.

Most machine learning techniques rely on the assumption that the entire
data, both training and testing, underlies the same data generation process.
However, this assumption is often violated when data originates from multiple
domains. Inequalities in the data generation process can lead to significant differ-
ences in marginal and conditional distributions of the data. Traditional machine
learning methods can handle these differences only in two non-optimal ways: i)
an individual model is fitted for each domain; a large amount of data is required,
which is expensive and the fitted models often do not generalize to new domains.
ii) Differences in the data generation process are ignored, by learning a model on



the pooled data. This approach usually results in low prediction accuracy and
poor generalization [15].

Considerable effort has been made to remedy this problem (see [15, 10] and
references therein). Given one or more target domains, the idea of domain adap-
tation is to adapt a model trained on the training domains such that the gen-
eralization error on the test domains is minimized. The dissimilarities of data
distributions from different domains are considered explicitly. Compared to a sin-
gle model fit to all domains, predictive accuracy and the generalization to new
domains can be improved. In comparison to tackling each domain independently,
data can be used much more efficiently, as knowledge is transferred between do-
mains. In this way, the effort to allocate data is massively reduced. The main
drawback with this approach is that one has to re-train the models for every new
target domain, which is time-consuming and inhibits real-time applications. Do-
main generalization is a solution to this problem: across-domain information is
extracted from training data and can be used on the target domains without
re-training.

The assumption in domain generalization is that the training and test do-
mains are related. That is, there is at least some common information among
the domains that is relevant for the considered machine learning task. Feature
subsets of domain datasets can differ by a combination of various properties,
including mean shift, scale, skewness, kurtosis, and rotation. For some appli-
cations such properties become obvious when doing exploratory data analysis.
However, usually the description of the task and some domain knowledge already
give strong indications to reject the hypothesis that the whole data is sampled
from the same data generation process. For example, in medical applications,
the data collected from two different patients usually cannot be assumed to be
sampled from the same data generation process. See Section 2.2 and Section 4.1
for further examples.

Transfer Component Analysis (TCA) [14] is a domain adaptation technique
that aims to learn a shared subspace between a source domain and a target
domain. The shared subspace consists of some transfer components learned in a
reproducing kernel Hilbert space (RKHS) [13] using maximum mean discrepancy
(MMD) [5]. In the subspace spanned by these transfer components, data distri-
butions of different domains should be close to each other and the task-relevant
information of the original data should be preserved.

In this paper, we extend the formulation of TCA to multiple domains, com-
pare it to the domain generalization methodDomain-Invariant Component Anal-
ysis (DICA) Muandet et al., and evaluate their benefits on real datasets. The
same extension presented in this paper enables the use of TCA for i) domain
adaptation problems with multiple domains; ii) domain generalization problems
with multiple source and target domains. This paper focuses on the domain
generalization setting. Our solution is based on the idea of learning a shared
subspace between source domains and using this subspace for related target
domains – without re-training. We present and evaluate two variants of our ex-
tension, an unsupervised version to which we refer as Multiple-Domain Transfer



Component Analysis (Multi-TCA) and a semi-supervised version calledMultiple-
Domain Semi-Supervised Transfer Component Analysis (Multi-SSTCA).

The remainder of this paper is organized as follows: Section 2 discusses re-
lated work in domain generalization and the bigger area of transfer learning and
domain adaptation. Section 3 presents our proposed extension to TCA in both
supervised and unsupervised settings. Section 4 shows an experimental evalua-
tion on two publicly available datasets from the UCI repository. Section 5 gives
the conclusions and directions for future work.

2 Related Work

2.1 Domain Generalization

Although, there is a large amount of publications in the field of transfer learning
and domain adaptation, very few studies address domain generalization. Re-
cently, Muandet et al. [12] presented a method called Domain-Invariant Compo-
nent Analysis (DICA), which addresses the problem of domain generalization.
DICA and its unsupervised version UDICA are closely related to Multi-SSTCA
and Multi-TCA. UDICA and Multi-TCA are derived differently but have similar
objectives. They both try to find a subspace where: i) the distance between the
domain datasets is minimized; ii) the variance in the feature space is maximized.
DICA is an extension of UDICA that takes the functional relationship between
X and Y into account – the derivation is again different to the extension of
Multi-TCA to Multi-SSTCA. Besides the different derivation, Multi-SSTCA is
more versatile than DICA as i) Multi-SSTCA can also consider the manifold
information (see objective 3 in Section 3.2); ii) the definition of Multi-SSTCA
can handle missing class labels, allowing the application of Multi-SSTCA to
semi-supervised domain generalization and domain adaptation tasks.

Persello and Bruzzone [17] address domain generalization by selecting fea-
tures that minimize the shift in the domain dataset distributions. Their selection
criteria select variables that have i) high dependency with the target variable
and ii) invariant data distributions across domains.

2.2 Transfer Learning and Domain Adaptation

In contrast to domain generalization, transfer learning and domain adaptation
have received a lot of attention in the recent years. Transfer learning [15] aims
at transferring knowledge from some previous tasks to a target task when the
latter has limited training data. Domain adaptation [18, 2, 10] can be viewed
as a subdomain of transfer learning, that deals primarily with a mismatch be-
tween training and test input distributions. A popular and intuitive approach
for domain adaptation is to make the source and target distributions as sim-
ilar as possible. The methods that follow this line of research can be grouped
into two categories. Firstly, sample re-weighting [8, 4] approaches, which apply
weights to the source samples to adjust their influence in the source distribu-
tion. Secondly, learning a shared subspace is a common approach in settings



where there is distribution mismatch. A typical approach in multi-task learning
is to uncover a latent feature space that is shared across tasks. Commonly, la-
tent factors are designed to represent statistical properties and/or the geometric
structure of the data. Methods of this category exist for problems with different
feature spaces [21] or marginal distributions [11].

There are quite some successful applications of transfer learning methods in
different real-world applications. One application is a WiFi-based indoor local-
ization problem presented in [16]. In this application the data is highly dependent
on time, space and the client device. Transfer learning was successfully applied to
transfer localization models over these dependencies. Another application area
is in the field of image processing, e.g. Hinton et al. [7] apply transfer learning
in a face recognition and a handwritten digit example. In [20, 12], Varnek et al.
apply transfer learning techniques in biological applications.

3 Transfer Component Analysis for Domain
Generalization

TCA aims to learn a good feature representation across different distributions,
i.e., a shared subspace. In the learned subspace the distance of the individual
dataset distributions is minimized and properties of the data are preserved. The
use of a RKHS provides the possibility to use non-linear kernels. Subsequently,
any machine learning method for regression, classification or clustering can be
used on the identified subspace.

TCA has originally been designed to work with the most common transfer
learning setting. In this setting, the goal is to find a common representation
for one source domain DS and one target domain DT , with at least some input
data XS , XT existing in both domains. Here, a kernel-induced feature map φ is
learned from {XS , XT }. Once transformed, the combined source and target data
can be used in the subsequent machine learning task. The TCA algorithm and
the learning setting described in this paper are different to the original Paper
presented by Pan et. al [14] in the following aspects:

– Differences in the learning algorithm: This paper gives an extension of
TCA to more than two domains. This can simply be achieved by extending
the cost, weight and kernel matrices – see Equation 1 for an extension of
the cost function as well as Equation 2 and Equation 3 for extension of the
matrices.

– Differences in the learning task: The original paper considers two do-
mains with input data from both domains. However, in our application,
the TCA transformation is applied to domains without any input data.
Here, first a common subspace for the source domain datasets X1, ..., XS

is learned. The learned model can then be applied to the target domain
datasets XS+1, ..., XU . The assumption is that the common data properties
extracted from the source datasets also apply to the target data.



The reminder of this paper describes the extensions from TCA/SSTCA to
Multi-TCA/Multi-SSTCA. See Pan et al. [14], and references within, for a more
detailed description of TCA/SSTCA, especially for the derivation of formulas.

3.1 (Unsupervised) Transfer Component Analysis

Multi-TCA is applicable if P (Xs) 6= P (Xu), 1 ≤ s < u ≤ U , where Xs, Xu are
domain datasets, P (Xs) is the probability distribution of Xs and U is the total
number of source and target domain datasets. The goal of Multi-TCA is to find
a feature map φ such that P (φ(Xs)) ≈ P (φ(Xu)).

Assume φ is a feature map induced by a universal kernel. Maximum mean
discrepancy (MMD) [5] measures the distance between the empirical means of
two domains in the RKHS. We extend to more than two domains

MMD =
1

S

S∑
s=1

||µxs
− µx̄||2H. (1)

Here, µxs
= 1

ns

∑ns

i=1 φ(xsi) and µx̄ = 1
S

∑S
s=1 µxs

, where ns are the number of
instances from Xs. S is the number of training domain datasets, xsi denotes the
ith instance of Xs and || · ||H is the RKHS norm.

Let K be a combined Gram matrix [19] of the cross-domain data of the
training domain X1, X2, ..., XS :

K =


KX1,X1 KX1,X2 . . . KX1,XS

KX2,X1
KX2,X2

. . . KX2,XS

...
...

. . .
...

KXS ,X1
KXS ,X2

. . . KXS ,XS

 ∈ RN×N (2)

where N =
∑S

s=1 ns. Each element Ki,j of K is given by φ(xi)
Tφ(xj). The

calculation of MMD in Equation 1 can be rewritten as tr(KL), where Li,j is
defined as

Li,j =

{
S−1
N2n2

s
if xi, xj ∈ Xs

− 1
N2nsnu

if xi ∈ Xs, xj ∈ Xu and s 6= u
(3)

and s, u ∈ {1, ..., S}. The computational expensive semi-definite program-
ming can be avoided by the use of a parametric kernel mapK = (KK−1/2)(K−1/2K).
Pan et. al [14] shows that the resulting kernel matrix K̃ = KWWTK, where
W ∈ RN×m, m � N is an orthogonal transformation matrix that is found by
Multi-TCA. As a result the MMD distance in Equation 1 can be rewritten as

MMD = tr((KWWTK)L) = tr(WTKLKW ). (4)

Similarly to PCA and KPCA [19], the second objective of Multi-TCA is to
maximally preserve the data variance. The variance of the projected samples
is WTKHKW , where centering matrix H is defined as H = I − 1

N 11T . Here,



1 ∈ RN is a column vector with all ones and I ∈ RN×N is the identity matrix.
With a regulation term tr(WTW ) and the tradeoff parameter µ, the objective
of Multi-TCA can be formulated as

min
W

tr(WTKLKW ) + µ tr(WTW ), s.t. WTKHKW = I. (5)

The embedding of the data in the latent space is given by WTK. The solution
of W is given by the m � N leading eigenvectors of

(KLK + µI)−1KHK, (6)

where µ > 0 is a tradeoff parameter that is usually needed to control the com-
plexity of W .

3.2 Semi-Supervised Transfer Component Analysis

Multi-SSTCA is an extension to Multi-TCA based on SSTCA from Pan et al. [14]
that also considers the conditional probabilities P (Yi|Xi), i ∈ 1, ..., S and opti-
mizes the following three objectives:

1. Distribution Matching: as in Multi-TCA, the first objective is to minimize
the distribution differences – measured by the MMD criterion (Equation 1)
– between the domain datasets.

2. Label Dependence: maximize the dependency between the embedding and
the labels. This is achieved by the use of the Hilbert-Schmidt Independence
Criterion (HSIC) [6] given by maxK�0 tr(HKHKyy), where Kyy = γwKl +
(1 − γw)Kv. Here, kl = φ(yi, yj) , Kv = I and γw is a tradeoff parameter
that balances the label dependence with the data variance terms. The second
objective is to

max
W

tr(WTKHKyyHKW ). (7)

3. Locality Preserving: Multi-SSTCA uses the manifold regularization of Belkin
et al. [1]. In order to preserve locality, each xi and xj that are neighbors in
the input space should also be neighbors in the data’s embedding. A matrix
M ∈ RN×N is constructed by Mi,j = exp(−(xi−xj)

2/2σ2) if xi is one of the
k nearest neighbors of xj , and Mi,j = 0 otherwise. The graph Laplacian is
defined by A = D −M , where D ∈ RN×N is a diagonal matrix with entries
Di,i =

∑N
j=1 Mi,j . The third objective is to

min
W

∑
(i,j)∈N

Mi,j ||[WTK]i − [WTK]j ||2 = tr(WTKAKW ). (8)

For Multi-SSTCA, the objective function is

min
W

tr(WTKLKW ) +
λ

n2
tr(WTKAKW ) + µ tr(WTW )

s.t. WTKHKyyHKW = I

(9)



and the solution of W is given by the m < N leading eigenvectors of

(K(L+ λA)K + µI)−1KHKyyHK. (10)

Note that Multi-SSTCA is a semi-supervised method in the domain adapta-
tion setting, where the input data from the target domain is used without the
target data. In domain generalization problems no target data is used at all.
Thus, in domain generalization the special case occurs where Multi-SSTCA is
used in a supervised setting – provided that no labels are missing in the source
domains. Despite of this technicality, the same method can be used for both
problem settings, domain adaptation and domain generalization.

4 Experimental Evaluation

4.1 Experimental Setup

We use two datasets for the experimental evaluation. i) The landmine data rep-
resents a landmine detection problem [22], based on airborne synthetic-aperture
radar measurements. It has 9 features and 29 domains. As the class labels (1
for landmine and 0 for clutter) are highly unbalanced, we took all instances
with class 1 and randomly selected the same amount of class 0 examples in each
repetition, resulting in a total number of 1808 instances.ii) The Parkinson tele-
monitoring dataset [9], which consists of biomedical voice measurements from 42
people with early-stage Parkinson’s disease. The Parkinson data was collected
in a six-month trial of a telemonitoring device for remote symptom progression
monitoring (5875 recordings in total). The goal is to predict the clinician’s scor-
ing of Parkinson’s disease symptom based on 16 voice measurements. There are
two scores to predict: the motor score and the total score on the Unified Parkin-
son’s Disease Rating Scale (UPDRS). We consider each dataset, related to one
patient, as a domain.

We compared Multi-TCA and Multi-SSTCA as preprocessor for a linear SVM
with: i) KPCA with an RBF kernel as preprocessor for a linear SVM; ii) an SVM
with a linear kernel and an SVM with an RBF kernel without any preprocessing.
For the landmine data 5 training domains are selected from each of relatively
highly foliated (domains 1 − 15) and bare earth or desert (domains 16 − 29)
regions. For the Parkinson data we also consider 10 training domains. For both
datasets, the remaining domains are used for testing. We randomly repeat 25
times the selection of training and testing domains. Parameters are selected by
5-folds cross-validation.

On both datasets, the number of components for all preprocessors is selected
from {1..15}. For the input data we use an RBF kernel and select γ ∈ {0.005..0.5}
and γ ∈ {0.1..1} for the Parkinson data and the landmine data, respectively.
For classification with DICA and Multi-SSTCA we apply the output kernel
kyy(yi, yj) = 1 if yi = yj and −1 otherwise. For regression we use an RBF kernel
with γ = 0.1. We set the Multi-TCA/Multi-SSTCA parameter µ = 0.1 and the
UDICA/DICA parameter λ = 0.1 for the landmine data. For the Parkinson data



µ = 0.01 and λ = 0.01. For UDICA and DICA ε = 0.0001. The Multi-SSTCA
parameter γw = 0.5. For Multi-SSTCA we build one model considering the man-
ifold information (λ = 1000) and one without considering manifold information
(λ = 0). We construct A using an RBF kernel (γ = 1) and 4-nearest neighbors.
For SVM we select C ∈ {10−4..104} and for γ we apply the same ranges that
are used by the preprocessors.

4.2 Experimental Results

The relative performance of the algorithms are summarized in Table 1. Per-
formance on the test data is measured by misclassification rate (MC) for the
landmine data and root mean square error (RMSE) for the Parkinson data.

The results in Table 1 show that Multi-TCA perform best on the landmine
data, followed by UDICA. DICA performs best on the Motor score Parkinson
problems, closely followed by the performance of Multi-SSTCA. With the same
RMSE of 8.73, Multi-SSTCA and DICA are also the best methods on the Total
score Parkinson problem. While taking the labels into account is clearly beneficial
on the Parkinson data, it is not on the landmine data, where Multi-SSTCA and
DICA perform worse than their unsupervised versions and KPCA. For Multi-
SSTCA and the evaluated datasets, the modeling of the manifold information
does not lead to any considerable improvements.

Table 1. Predictive performances mean(std) of the evaluated methods.

Preprocessor SVM Parkinson Parkinson Landmine
Kernel Motor score Total score

Multi-TCA linear 32.39 ±1.49 11.39 ±0.76 8.91 ±0.69
Multi-SSTCA(λ = 0) linear 32.81 ±1.32 11.30 ±0.83 8.73 ±0.77

Multi-SSTCA(λ = 1000) linear 33.14 ±1.61 11.29 ±0.82 8.76 ±0.76
UDICA linear 32.43 ±1.26 11.58 ±0.80 9.02 ±0.68
DICA linear 33.56 ±1.20 11.25 ±0.82 8.73 ±0.75
KPCA linear 32.71 ±1.53 11.53 ±0.85 8.89 ±0.70
None linear 32.66 ±1.43 12.30 ±3.90 9.15 ±1.27
None RBF 32.51 ±1.19 11.56 ±1.28 9.02 ±0.98

On the evaluated datasets, differences in computation time can be neglected
for the domain generalization methods. For example, the required computation
time of the considered methods (Multi-TCA, Multi-SSTCA, UDICA, DICA) on
the Parkinson Motor Score data are all within 32 ± 1 seconds on a standard
PC. The most computational demanding tasks are the eigenvalue decomposition
followed by the computation of kernel matrixK (Equation 2), which are required
by each of the methods.

5 Conclusion and Future Work

In this paper we presented an extension of TCA to multiple domains and suc-
cessfully applied it for domain generalization. We showed that improvements in



predictive performance can be achieved by aligning related datasets via the do-
main generalization methods Multi-(SS)TCA and (U)DICA. The performances
of Multi-TCA and Multi-SSTCA on the two benchmark datasets were compara-
ble to the performances of UDICA and DICA, respectively. However, compared
to DICA, Multi-SSTCA can also take the manifold information into account
(locality preserving) and is applicable for semi-supervised domain generalization
tasks and domain adaptation. Although, the manifold information did not lead to
any considerable improvement on the evaluated datasets, Pan et al. [14] showed
its usefulness on simulated and real world domain adaptation problems. In the
future we want to investigate the usefulness of the manifold information for do-
main generalization problems. Multi-TCA/Multi-SSTCA has many parameters
that can be optimized. We plan to conduct sensitivity analysis and work on a
parameter selection strategy.
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